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ÜNICITY OF THE EXTREMTJM PROBLEMS IN fP(£/»)

KÔZÔ YABUTA1

Abstract. In 1958 de Leeuw and Rudin have given a suffi-

cient condition for a function in ^(U) to be a unique solution of

the extremum problem. We give in this paper a stronger sufficient

condition (Theorem 1) which holds also in re-dimension. Our

Theorem 1 fills up considerably the gap of de Leeuw-Rudin's

result. We give also another proof of Neuwirth-Newman's theorem

and its re-dimensional generalization.

1. Let S be the unit ball of the Hardy class H1(Un) in the unit

polydisc Un. If 0 is a bounded measurable function on Tn: the distin-

guished boundary of Un, we shall denote by A the bounded linear

functional defined on Hl(Un) by

(1) AC/) -  f f*(w)<p(w)dmn(w),

where m„ denotes the normalized Haar measure on T", and f*(w)

= lim,.-i/(ra) if it exists. The norm of Als

(2) || All =sup| A(/)|,
/es

and we let S$ denote the set of all/£S for which A(/) =|| A||- The

set 5* is the set of solutions of the extremum problem. Necessarily

/££* must be of norm 1. Here is a lemma which can be obtained in a

similar way in [l].

Lemma 1. fand g belong to the same S 4, if and only if

arg/*(w) = arg g*(iv)    a.e. w £ T"

««* ii/ii=y=i-

By this lemma, if/£.rA(t/n) and ||/|| = 1,/belongs to one and only

one S4, = 5|/*|//*, which we denote by Sf.

Now we state

Theorem 1. (a) IffEH^U"), \\f\\ =i,fisouter, and l/f* £L1(A),
then Sf consists of f alone.
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(b) If Sf consists of f alone, then f is an extreme point of S and

f(z)/(l —u(z)Y fails to be in H1(Un) for every inner function u(z).

Theorem 2. IffEIP(U»), ||/||=l,/*s outer, and i/f* EL*(T»)
(Jg£<l), then S'- {/} contains no H*(Un) (l/p + l/q = 2) function.

Theorem 3. Sf consists of f alone if and only if ||/+g||<2 for

every gES,g7*f.

As a corollary to the proof of the above theorems we can give

another proof of Neuwirth and Newman's theorem [2] and its n-

dimensional generalization.

Theorem 4. If f<EHll2(Un) and f*(w)^0 a.e. on T", then f is a

constant.

2. The key tools in proving the above theorems are the following

lemmas. Lemma 2 is an elemental property of L1 and Lemma 3 is

given essentially in [l] for Hl(U).

Lemma 2. Iff, gGL^T») and \\f\\ =||g|| = ||(/+g)/2||, then arg /
= arg g a.e. on Tn.

Lemma 3. IffEH"(U) (/>è 1), then there exists g&H»(U) such that

(1) ||/+g||i = ||/—g\\i = \\f\\i and consequently

arg(/*(w) + g*(w)) = arg(/*(w) — g*(w)) = argf*(w)    a.e. on T.

(2) f±g are outer.

Proof. Let / = M¡Qf be the inner-outer factorization of /. Clearly

there is a real a such that

(2.1) |   \f*(w) | Re[eiaMf*(w)]dmx(w) = 0.

Put

u(z) = eiaMf(z),       zG U,

and

g(z) = $e-<°Q,(z)(l + u*(z)),        z G U.

Since Qf is in H^(U), we have gE.Hv(U) and

\f*(w) ± g*(w) |   =  \f*(w) I (1 + Re[w*(w)])    a.e. on T.

By (2.1) we have, therefore, ||/+g||iH|/-*||i = ||/||i.
Since u(z) is inner, we have Re(l±w(z))>0 (zÇzU), and con-
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sequently 1 ±u are outer functions by Lemma 1.4 of [l]. Thus, since

f±g= ±ie~ic*(?/(l +u)2,f + g are outer functions.

Lemma 4. If f is an outer function in HP(U) (%^p^l), hEHq(U)

(l/p-\-l/q = 2), and iff*h*^0 a.e. on T, then f h is a constant.

Proof. As Jg£^l and l/p + l/q = 2, we have lá<Zá=°°- Thus

by Lemma 3 there is gEH"(U) such that h+g are outer and

arg (h*±g*) = arg h* a.e. on A As/and h+g are outer, they have no

zeros in U. Hence V/£ A2p( U)2 and V(h±g) EH2"( U), which implies

that VfV(h±g)EH1(U). Since f*h*^0, and arg(h*±g*) =arg h*
a.e. on T, we have f*(h*+g*) ^0 a.e. on A which implies that

(Vf\/(h + g))* are real a.e. on T. These two facts show that V/

\/(h + g) are constants since every Hl(U) function can be represented

by the Poisson integral of its boundary function. This shows clearly

that fh is constant.

3. Proofs of Theorem 1(a) and Theorem 2. Since Theorem 1(a)

is a consequence of Theorem 2 it is sufficient to prove Theorem 2.

Since / is outer, l/fEN.(Un), so 1//*£/>(A) implies that 1//

EH"(Un). Hence for almost all w£A,/M,(X)£A1(C/) and 1//„(X)

EH*(U), where /„(A) =/(Xw) for X£ £/, w£ A. Let gESfr\H*(U»),
then by Lemma 1, for almost all wE Tn, we have gw(ei6)/fw (eie) Ï;0 a.e.

on T. Thus remarking that/, 1//£A7*(Z7) implies that/is outer, we

see, by Lemma 4, that almost every gw/fw(X) is a constant aw. But the

discs {Xw; |\| <l} intersect at (0, • • • , 0), so gM//t»(X) —g/f(0) for

almost all wETn. Expanding ¿//homogeneously, we haveg// = g//(0).

Since y-H/ll-l,f//must bel.

4. The proof of Theorem 1(b) follows along the same lines as that

of Theorem 8(b) of [l]. Theorem 3 is a variant of Lemma 1 by

Lemma 2.

5. Proof of Theorem 4. For the case n = 1, we have/= M¡Q¡, where

M¡ is inner and Q/ is outer and is in Hll2(U). Thus by Lemma 4, the

fact that/* è 0 a.e. on T implies that/ is a constant. For general n, we

have that/œ(X)£A"2(i7) and/*(ei9)^0 a.e. on T, for almost all

w£T". Hence by the above discussion it follows that /W(X) =aw for

almost all w£ T". The rest of the proof follows along the same lines as

that of Theorem 1 (a).

Remark 1. Theorem 1 fills up the gap of Theorem 8 of [l] con-

siderably, and is, in ásense, sharp. That is, if the assumption 1//*£L1

is replaced by 1//*£A (0<p<l), (1 —zi)«/||(1 —Si)"||i (\<a<\/p)

1 The branch of V is such that VI = L
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gives an example in which Sf contains at least two functions, by

Theorem 1 (b), where 2 = (zj, • • • , z„).

Remark 2. The conditions of Theorem 1(a) are equivalent to the

condition that both/and 1//belong to if1 (£/").

Remark 3. We can also prove Theorem 1(a) by using Neuwirth

and Newman's theorem, but we dared to show it without use of their

theorem. And also after giving the proof of Theorem 4, we can give

Theorems 1 and 2 as corollaries of Theorem 4. But we consider that

Lemma 4 is certainly useful.
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