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ON AN INTEGRAL FORMULA OF
GAUSS-BONNET-GROTEMEYER

BANG-YEN CHEN

Abstract. Let e(p) and G(p) be the unit outer normal and the

Gauss-Kronecker curvature of an oriented closed even-dimen-

sional hypersurface M of dimension n in En+1. Then for a fixed

unit vector c in £n+l, we have

f (c-e)">GdV = wM/t.,    for m - 0,2,4, • • • ,
(.1) J M

= 0, for m = 1, 3, 5, • • • ,

where ce denotes the inner product of c and e, cm the area of »re-

dimensional unit sphere, and x(ilf) the Euler characteristic of M.

Let M be an orientable closed hypersurface imbedded in a eu-

clidean space En+1 of dimension « + 1^3. Let x(j>) be the position

vector of a point p with respect to a fixed point 0 in En+1, and e(p),

G(p) and dV the unit outer normal, the Gauss-Kronecker curvature

at p, and the volume element of M in En+l, respectively. The main

results of this paper are the following:

Theorem 1. Let M be an oriented closed hypersurface of dimension n

imbedded in euclidean space En+1 of dimension n-\-1 ^ 3. Then we have

m I    (x-ej^xGdV = (n + m) I    (x-e)meGdV,
(2) J m J M

m = 0, Í, 2, 3, ■ ■ ■ .

Theorem 2. Under the same hypothesis of Theorem 1, if the dimension

of M is even, then for a fixed unit vector c in En+1, we have

I   (c -e)mGdV = cn+mxiM)/cm,        for m = 0, 2, 4, • • • ,
(3) J M

= 0, for m = 1, 3, 5, • • • .

Remark. If m = 0, then formula (3) is the well-known Gauss-

Bonnet formula, and if m = 2 and n = 2, then formula (3) was proved

byGrotemeyer [3] in 1963.
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1. Preliminaries. Let M be an oriented (differentiable) manifold

of dimension re, and let x : M—>En+1 be a hypersurface. Let e(p),

pEM, be the unit outer normal at xip). We consider the orthonormal

frames et, • • • , eB in the tangent hyperplane at xip), such that the

determinant (ei, • • • , eB, e) = +1. The space of all ex, ■ ■ ■ , eB can

be identified with the principal fibre bundle B of M relative to the

induced metric dx-dx (for the details, see Chern [2]). We have

(4) dx = «iei + • • • + o!BeB,        de = öiei + • • • + 0Be„,

so that w„ Bi, l^i^n, are linear differential forms in B. Since

(5) e-ix «■ 0,

we get, by exterior differentiation,

(6) de A dx = 0.

The left-hand side in (6) is the exterior product of two vector-valued

linear differential forms; vectors are multiplied in the sense of scalar

products in En+1. In view of (4), equation (6) can be written

(7) D *< A Bi = 0.
»'

Since «< are linear independent, we can put, in view of (7),

(8) Bi = £ Aijuj,    An = Ají,        1 g i,j g n.

The Gauss-Kronecker curvature G is given by

(9) G = det(Aij).

Since ei, • ■ • , en is an orthonormal frame, we know that the volume

element dV=o)xA • ■ ■ A"». Hence, by (8) and (9), we have

(10) Bi A • • • Aft. - GdV.

For simplicity, let [ , • • • , ] (re terms) denote the combining

operation of the vector product of En+1 with the exterior product.

From (10), we have

(re times)
(11)

[de, ■ ■ ■ , de] = (re!GW)e.

2. Proof of Theorem 1. Put

(12) d - £ (-1)«*, A •••.-. A#* A • • • A one,-,

where "*" denotes the omitted term. Then, from (4), we have
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(» — 1 times) in — 1 times)

[de, ■ ■ ■ , de, e] = [23 0¿ej, • • • , £ 0¿e,-, e]

(13) = (»- 1)¡2>iA • • • Aö.-A • ■ • AÖ„[ei, • ■ • ,ê<, • • • ,e„,e]

= in-^lJ^i-iy-^ßiA ■ ■ ■ AêiA • ■ ■ A0nei

= in- l)!(-l)»ö.

From (11) and (12), we get

in times)

(14) do = - [de, ■ ■ ■ , de}/in - 1) ! = - inGdV)e.

By (4), (12) and (14), we have

d((x-e)md) = mix-e)m-\x-de) A «J + ix-e)mdd

(15) = mix-e)™-1^ (x-e,)e¿0i A • • • A 0n + ix-e)mda

= mix-e)m~lxGdV — (« + m)ix-e)meGdV.

Integrating both sides of (15) over M and applying Stokes' theorem,

we get (2). This completes the proof of the theorem.

3. Proof of Theorem 2. Let c be a unit vector in En+1. Taking the

scalar product of c with both sides of (2), we get

(Ao)      m I   ix-e)n-li*-c)GdV = in + m) f (x-e)m(c-e)GdV.
J M J M

We make the translation x—>x + c of M. Then, by (A0), we get

Xm^ (m - 1\
2 ( ) (x-e)«(c-e)"-"-1((x-c) + i)GdV

(A.') "<l=oV    H    '

= in+m) f    ¿ ( J (z*«)*(e-0)—*"GW.

(Ao')-(Ao) gives

«f   Z(m.     )(x'e)ft(x-c)(c-e)—'»-^¿F

/'    "^L1 /W — 1\Yi[     .     )(x-e)il(c-e)—ö-'Gd^
AT »i-O \      *1      /

= (» + m) (     ¿ (") ix-e)Hc-e)m-il+lGdV.
J M »!-0 \*l/

Again we make the translation x—»x+c of J17 into (Ai) and then

subtract from iAi), we get
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« f   Z(     .      ) Z(!I)(xe)»(xc)(ce)'»-<»-1GáF
J M <i-0  \       ix       /   ¿¡=.0   \î2/

+-/rzfrl)£(i,)+'srr1)SHi
•' Af L tj-0  \       H       /  tj=0 \i2/ <,_0 \       tl       /  «j=0  \Î2/J

(As)
• (x-e)is(c-e)m-<2-1GdF

/.     m—X   /m\   »1—1  /ij\
El. ) Z ( . )(xe)»(ce)m-»+1C7¿F.

Af ij_o Vil/ ,-2_o \it/

Continuing this process k times (k = i, 2, ■ ■ ■ , m), we get

./ï(":')S (*)- *£'('")•' M »i-O \      tl       /  »2=0   \í2/ »i=0    \   1>k  /

• (x • e) *(x • e) (c • e)m-i*-1GdF

+.frs("r')sn
•J M L »i-O  \       »1       /   »2-0 \î2/

ifc-l-O \ik-X/   »t-0 \  tk   /

+ l(" :')£(;)■ ■■£(':')
<1=0  \      »1       /  »s-0 \í2/ »,—0  \  îy   /

,t_0   \   lk   /

+ e(":')i(?)-ï,M1
,1=0 \       tl       /   »,-0 \t2/ »i=0    \   í*   /J

•(x-e^Kc-e^-'fr-'GaT

r "îz.1 /»î\ 'n1 /
= (n + m)

(A.)

•' Af »i-O Nil/  «j-0 \tä/ »t=0    \  lk  /

■(x-e)Hc-e)m-il+1GdV.

In particular, if k = m, then the first integral of (A*) does not ap-

pear, and the terms in [*+•••+*] in the second integrand is

equal to m !. Thus, (Aro) gives us the following formula:

m ff(c-e)m-lGdV = (re + m) f (c-e)m+1GdV,
(16) Jm Jm

m = 1, 2, 3, • • • .
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Hence, we get

m — 1
(17) /m — 1      eic-e)mGdV =-      ic-e)m~2GdV.

m                       n + m — U m

By the assumption, n is even. Hence if m is a positive even integer,

then by (17), the Gauss-Bonnet formula and the fact

(is) cN = 2[r(i)]*+yr(KA/ + i)),

we get

/im - \)im - 3) • • • 1 ric-e)mGdV =-      GdV
m                        in + m- l)in + m-3) ■ ■ ■ in+l)JM

= ca+n,xiM)/cm.

Moreover, by (2), we get

(20) I   eGdV = 0.
J M

Taking the inner product of c with (20), we get

(21) f ic-e)GdV = 0.

Hence, in view of (16) and (21), we find that

L(22) I    ic-e)mGdV = 0,       for all m = 1, 3, 5, • • • .
Jjif

Therefore, by (19),  (22)  and  the Gauss-Bonnet formula,  we get

formula (3). This completes the proof of the theorem.

The author would like to express his hearty thanks to Professor

T. Nagano for valuable conversations about this paper.
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