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CONTINUOUS AND PROPER DECOMPOSITIONS

G. K. WILLIAMS1

Abstract. If X is a locally connected, locally peripherally com-

pact Hausdorff space and if R is an equivalence relation on X with

fibers which are connected with compact boundaries, then it is

shown that three definitions of continuity of R are equivalent. Some

of the propositions used to obtain this result are then applied to get

sufficient conditions for a decomposition of certain types of metric

spaces to be proper.

1. Introduction. The notion of continuity for decompositions of

topological spaces goes back to R. L. Moore [ó] and Alexandroff [l].

In recent years this concept and that of a proper decomposition have

been quite useful in analysis as will be noted, for example, in [2],

[4], [5], [7]. There are several definitions of continuity which are, in

general, not equivalent and one purpose of this note is to give condi-

tions under which they are equivalent. We also make some observa-

tions concerning proper decompositions. Essential use is made of the

results and methods in [3] and [9].

2. Definitions and terminology. Consider an equivalence relation

F on a topological space X. Given a set SEX, R(S) is the set of all

points xEX such that x is equivalent to some point of 5 and is called

the saturation of S. In particular, if xEX, then R(x) is called a fiber.

If F is a filterbase on X then R generates a filterbase, F¡¡, each element

of which is the saturation of some element of F. The set of accumula-

tion points of a filterbase F will be denoted by A (F).

A relation R is open (closed) if the saturation of every open (closed)

set in X is open (closed). R is Hausdorff if the quotient space is

Hausdorff. R is proper if the saturation of every compact set is com-

pact.

3. Continuity conditions. Let X, R be given and let p:X—>X/R be

the natural projection. Then consider the conditions:

I. F is open.

IL F is closed.
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III. For every filterbase F converging to xEX, R(x) EA (FR).

IV. For every filterbase F converging to xEX, A (Fr) ER(x).

If R satisfies I (II) it is called lower (upper) semicontinuous in the

open set sense. Condition II is obviously equivalent to:

II'. For every open set UEX the union of all fibers contained in U

is open.

If R satisfies III (IV) it is called lower (upper) semicontinuous in

the limit sense.

Consider now the conditions:

Ci: R satisfies I and 11.

C2: R satisfies III and IV.

C3: (1) R is open, (2) R is semiclosed, i.e., the saturation of every

compact set is closed and (3) if UEX/R is an open connected set then

each component of p~A U) maps onto U.

Ci is continuity in the open set sense, C2 is continuity in the limit

sense and C3 was proposed by Whyburn and studied in [9] and [lO].

It is well known (see [3 ] or [4 ]) that I and III are equivalent condi-

tions and that C2 holds if and only if R is open and Hausdorff. For

first countable spaces C2 is equivalent to: for every sequence {xn},

{xn}—>x implies R(xn)—*R(x). Also, for first countable spaces condi-

tion IV is equivalent to:

IV. Any fiber which intersects the limit inferior of a sequence of

fibers contains the limit superior of this sequence.

Using the above remarks and [9, Theorem 1.1 ] we have the follow-

ing result.

Proposition 1. If X is first countable and R is open and semiclosed,

then R is C2.

As a corollary to Proposition 1 we get the well known fact that if X

is a first countable space in which compact subsets are closed, then X

is Hausdorff.

Proposition 2. If X is a locally connected Hausdorff space and R is

Ci, then R is C3.

Proof. Since X is Hausdorff and R is closed, the saturation of

every compact set is closed.

Suppose U is some region in X/R and Q is a component of p~x(U)

which does not map onto U. Then there is a point y EU which is a

limit point of p(Q) with y£ U—p(Q). Let VEX be the union of the
remaining components of p~1(U). V is then open and contains p~l(y)

and hence F contains an open saturated set V which contains £_1(y).

Thus piV')E U is an open set which contains y but p(V')C\p(Q) =0.
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The proof of the following proposition is similar to that of [9,

Theorem 7.1 ] and will be omitted.

Proposition 3. Let X be a locally connected, locally peripherally

compact Hausdorff space and suppose R is C3 with fibers which have

compact boundaries. Then R is closed and hence Ci.

We can now give conditions which imply the equivalence of the

three continuity definitions.

Theorem. If X is a locally connected, locally peripherally compact

Hausdorff space and the fibers of R are connected with compact boun-

daries, then Ci, C2, and C3 are equivalent.

Proof. The equivalence of Ci and C2 is proved in [3, Satz 7] and

the equivalence of Ci and C3 follows from Propositions 2 and 3.

The connectedness is necessary as is shown by the following well-

known example.

Example. Let SEE2 be the set

S = I (x, y) I y = 0, 0 g x ^ l} KJ {(x, y) | y = x, 0 ^ x < 1/2}.

Two points are R equivalent if they lie on the same vertical line. Then

R is C2 with compact fibers but not Ci or C3.

The point-inverse decomposition of the complex exponential

function is an example which is C2 and C3 but not Ci.

4. Proper decompositions. If F is a closed equivalence relation

with compact fibers, then R is proper. We also note that a fiber of an

open and semiclosed relation is either an open set or is its own

boundary.

Proposition 4. 7/ X is connected, locally peripherally compact and

metric and if R (nondegenerate) is open and semiclosed with fibers which

are connected with compact boundaries, then R is proper.

Proof. Since R is open and semiclosed and X is connected it is easy

to see that the fibers of R are compact. That R is closed follows from

Proposition 1 and [3, Satz 7].

Proposition 5. If X is connected, locally connected, locally periph-

erally compact and metric and if R (nondegenerate) is C3 with fibers

which have compact boundaries, then R is proper.

Proof. The proof is similar to that of Proposition 4 except that here

we use Proposition 3.

In both cases X/R is metric by the results of [8].



270 G. K. WILLIAMS

References

1. P. Alexandroff and H. Hopf, Topologie. Vol. I, Springer, Berlin, 1935.

2. H. Cartan, Quotients of analytic spaces, Internat. Colloq. Contribution to Func-

tion Theory (Bombay, 1960), Tata Institute of Fundamental Research, Bombay,

1960, pp. 1-15. MR 25 #3199.
3. J. Flachsmeyer, Über halbstetige Zerlegungen topologischer Räume, Math. Nachr.

24 (1962), 1-12. MR 26 #5534.

4. H. Holmann, Komplexe Räume mit komplexen Transformationsgruppen, Math.

Ann. 150 (1963), 327-360. MR 27 #776.
5. I. Lieb, Über komplexe Räume und komplexe Spektren, Invent. Math. 1 (1966),

45-58. MR 33 #5939.

6. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ.,

vol. 13, Amer. Math. Soc, Providence, R. I., 1932.

7. K. Stein, Analytische Zerlegung komplexer Räume, Math. Ann. 132 (1956),

63-93. MR 18, 649.

8. A. H. Stone, Melrizability of decomposition spaces, Proc. Amer. Math. Soc.

7 (1956), 690-700. MR 19, 299.
9. G. T. Whyburn, Continuous decompositions. Amer. J. Math. 71 (1949), 218-

226. MR 10, 317.
10. -, Open mappings on locally compact spaces, Mem. Amer. Math. Soc.

No. 1 (1950). MR 13, 764.

Southwestern at Memphis, Memphis, Tennessee 38112


