
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 28, No. 1, April 1971

REPRESENTATIONS OF /-GROUPS BY
ALMOST-FINITE QUOTIENT MAPS

DONALD A. CHAMBLESS

Abstract. There are numerous existing methods of embedding

an archimedean lattice group into a space of extended-real-valued

continuous functions defined on a topological space. In this paper

the topological space is constructed using the hull-kernel topology

and some prime subgroups of a certain extension of the given group,

and the representing functions are described as certain quotient

maps. The resulting representation essentially coincides with

earlier representations given by B. Vulih and by S. J. Bernau.

1. Introduction. There is a rather large literature concerning the

general problem of embedding a lattice-ordered algebraic structure

into a space of continuous, almost-finite functions defined on a suit-

able topological space. The concepts of prime subgroup, projector,

carrier, component of a weak unit, and polar subgroup are among

those considerations which have given rise to the topological spaces

which have been variously used in this context, [l], [3], [9]-[l7]. In

general the spaces used cannot be considered as "canonical", the

exception here being the representation of Bernau [3].

Johnson and Kist [lO] have shown that many of the existing

representation theorems of the above type can be considered as

essentially describing embeddings of the lattice-ordered algebraic

structure being considered into the lattice of all almost-finite

continuous functions defined on some space of prime subgroups with

the hull-kernel topology, and they point out the central role of the

concept of spectral function in such representations.

It follows from the uniqueness of the representation described by

Bernau (Theorem 5 of [3]) that the representation described in [ll],

[15] is essentially the same as that of [3]. The purpose of this note is

to show that these also may be viewed as representations utilizing a

certain space of prime subgroups with the hull-kernel topology. Addi-

tionally we show that there is a rather natural way to describe the

representing functions as certain quotient maps.

Let H be an archimedean /-group and let {X\} ¿ be a maximal set of

pairwise disjoint strictly positive elements. If K is the completion of
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the divisible hull of H then each polar subgroup of K is a cardinal

summand; in particular this is true of the principal polars x". Hence

for each \EA we have X = XxrBxx and for each kEK we have the

corresponding unique representation ¿ = ¿x + ¿\ This gives rise to an

embedding fc-+( • • • , ¿x, • • • ) of K into G=Ha x" (tne large car-

dinal sum). G is then a complete vector lattice with weak unit

e= ( • • ■ , xx, • • • ), and the injection of H into G preserves all sups

and infs existing in G. We proceed to consider the representation of G.

Notation. We use, unless otherwise specified, the terminology and

notation of [6], [8]. R will denote the totally-ordered group of all real

numbers, and Re will denote the two-point compactificatiori of R

(Re = R^J { + oo } ). General references on lattice-ordered algebraic

structures are [5], [6], [8].

2. Throughout the remainder of this note G will denote a complete

vector lattice with weak unit e>0. Let (P(G) denote the complete

Boolean algebra of polar subgroups of G (for a set S, S' will denote the

corresponding polar subgroup) and let X denote the Stone representa-

tion space of <P(G).

A component of the unit e is an element / such that/A(e—f) = 0.

By the completeness of G it follows that each QE(?(G) is a cardinal

summand of'O and that there exist components/!, f2 of the unit e such

that Q=f['=f2. For each xEX define Nx to be [}{g":g"EK(x))
where K(x) denotes the kernel of the Boolean homomorphism x.

Then Nx = \j{z':z"^K(x)} and so it follows that Nx is a minimal

prime subgroup of G [lO], and that the resulting correspondence

x<-+Nx is a bijection between X and the space of all minimal prime

subgroups of G [7]. If a(x) denotes the (unique) value of e containing

Nx then the resulting correspondence x<-+o-(x) is a bijection between X

and the space 911 of all values of e in G (see Proposition 5 of [2]).

Imposing the hull-kernel topology on 911 we have

Lemma 1. a is a homeomorphism.

Proof. Let 0 be a closed-open set in X. Then 6 = {xEX:x(h") = 1}

for some component h of the unit e, and o-(0) = 9TCä, the set of all

ME^L such that h(£M. 3TCA is an open set in 9TC and thus o-1:^—>X

is continuous (since X has a basis of closed-open sets).

Now X is Hausdorff and 9TC = 9ft% is compact [lO]; thus a~l is a

homeomorphism.

Corollary. {911* : h is a component of e] is a basis of closed-open

sets for the hull-kernel topology on 9TC. 9TC is compact, Hausdorff, and

extremally disconnected.
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For each 2fcf£9ft let M* denote the smallest /-ideal of G properly

containing M and let pM denote the vector lattice isomorphism of

M*/M onto R such that pM(e+M) = 1. For each gEG let 7(g) : 9ft-»2?«

be defined by
y(g)(M) = + 00 if g + M* > M*,

= PM(g+M)    if g G M*,

= - 00 if g + M* < M*.

Note that y (g) (M) = + <x> iff g+^M*.

Let 2?(9ft) denote the space of all continuous functions /:3TC—»2?"

which are finite on a dense subset of 9ft (almost-finite). Then 2?(9ft) is

a complete, laterally-complete vector lattice [15].

Lemma 2. For each gEG, y(g) is an almost-finite continuous function

and hence y maps G into D (9ft).

Proof. For each rER, y (re) is the constant function with range

{r}. To show that 7(g) is continuous it suffices to show that

y(g)~1(r, + °° ] and 7(g)_1[~ °°> r) are open in 9ft for all rER- A

routine computation shows that these sets are aft^-,«)"1" and

9Il(0_re)_, respectively. Hence 7(g) is continuous.

Suppose now that 0<g£jG and that 0</ is a component of e and

write f=fx+fA\g, g = gx+fAg- Since G is archimedean, fl9ft = 0
(if 0<a£ri9ft then for each »*il, e~^n(a/\e) mod all values of

e — n(a/\e)) and each nonzero element of G has a value in 9ft (if

0<gGG has no value in 9ft then g~^n(g/\e) mod M for all w^O and

all Af£9ft). If/i^O and If G 9ft is a value of /, then we have f$M

and gEM*, while if /i = 0 then/^g and it follows from the archime-

dean property of G that there exists an 7V"G9ft such that /£$; TV and

gEN* (note that since/ is a component of e, fEM* for all M£9ft).

Therefore 9ft/9¡7(g)-1(+ °°) and so 7(g) is almost-finite. And in

general, if hEG then y(h)_1i+ °°) is the union of 7(A+)-1(+oo) and

yih~)~xi+ 00 ) and hence is nowhere dense in 9ft.

Theorem. 7 is a vector lattice isomorphism of G into D(9ft) pre-

serving all sups and infs existing in G.

Proof. 7 maps G into D(9ft) by Lemma 2. An element of D(9ft) is

determined by its restriction to any dense subset, and for gx, gîEG

and rER it is obvious that the functions y(gx + rgz) and 7(gi)+ry(gj)

agree on the dense open set S=7(gi)~1(2?)rN\7(g2)-1(-K)- Also, if

y is) =0 then gGH9ft = 0, and hence 7 is a vector space isomorphism.

Moreover, if giAg2 = 0 and MGS with y(gi)(M)^0 then giG^

implies gzEM so that 7(g2)(Af) = 0. Hence 7 is a vector lattice iso-

morphism.
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It follows easily that 7(G) is a dense /-subgroup of Z)(9TC) (in fact,

an /-ideal) and hence (see Lemma 10 of [4]) y preserves all sups and

infs which exist in G.

Note. As has been previously mentioned (with reference to the

Introduction) it follows that the injection of H into G preserves all

sups and infs existing in H, and hence y| h is an /-isomorphism of H

into D(9TC) which preserves all sups and infs existing in H. y(H) is a

large /-subgroup of Z>(9Tl) (i.e., y(H) meets every nonzero /-ideal in

D(9Tl)), and hence y\ h has all the properties mentioned in Theorems

4, 5 of [3].
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