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ON ROOTS AND SUBSEMIGROUPS
OF NILPOTENT GROUPS

JOSEPH E. KUCZKOWSKI

Abstract. Em Ua and Da semigroups are defined by extrap-

olating the definitions of their group counterparts; and a class n

semigroup is defined to be a subsemigroup of a class « group. The

purpose of this paper is to show that a class n Ea semigroup

generates an Ea group and that a class n semigroup is Ua if and

only if it generates a Ua group.

Eu, Ua, and Dw semigroups are defined in a manner similar to the

group definitions presented by G. Baumslag [l]. Thus, let w be a

nonempty fixed set of primes. A semigroup 5 is an Ea semigroup if

for any s ES and pE<¿ there exists t ES so that s = tp. 5 is a Uu semi-

group if pth roots are unique when they exist. If S is both E„ and

Ua, then 5 is called a D„ semigroup.

The properties of existence and uniqueness of roots are investi-

gated with respect to subsemigroups of class n nilpotent groups

(referred to as class n semigroups) and the subgroups which these

semigroups generate.

The purpose of this paper is to prove the following two theorems:

Theorem A. A class n semigroup is a Uo, semigroup if and only if it

generates a Ua group.

Theorem B. A class n Ew semigroup generates an Ew group.

Remark 1. The converse of Theorem B is not available. Consider,

for example, the semigroup Q' of rational numbers q, ff^l, under

addition. Q' is not divisible, but it generates the divisible group of

additive rationals.

Remark 2. Referring to the paper of B. H. Neumann and T. Taylor

[3] on subsemigroups of nilpotent groups, Theorems A and B may

be recast as follows:

Theorem A'. A cancellative semigroup satisfying the L„ law is Uw if

and only if it generates a class n Ua group.

Theorem B'. An Ea cancellative semigroup satisfying the Ln law

generates a class n Eu group.
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Proof of Theorem A.

Al. If S is a class n Uu semigroup in a group G, then the center of

the group generated by 5, Z(gp{5}), is u-free i.e. having no elements of

order p for any pEu.

According to Neumann-Taylor [3], gp {5 }= 55-1 = 5-15. Thus,

suppose SxS2~1EZ(gp{S}) for some slt s<¿ES and that (sis¿"1)p = l,

where p is some element of w and 1 is the identity of G. Now, Sx and

52 commute so that sï = if. Since 5 is Uu, Sx = S2 and 5is¿"1 = l.

A2. If S is a class n Uw semigroup in a group G, then gp{5{ is

u-free.
Suppose the upper central series for gp{5} is {l}=Z0:SZig • • •

5=Zn = gp{5}. Zx is the center of gp{5} and, according to part Al,

is co-free. Since Zx is abelian, it is clearly a Uw subgroup so that the

identity subgroup Z0 is an co-subgroup of Zx. Here we may recall that

a subgroup H oí a. group K is called an co-subgroup of K if the relation

kpEH implies kEH for any pair k and p, with kEK and pE<¿-

Let us proceed by induction and assume for each pair {Z,_i, Zt},

¿=1, ■ • ■ , k — 1, that Zi is co-free and Z;_x is an co-subgroup of Z,-. It

may then be shown that for i = k, the pair {Zi_i, Zk] fulfills the con-

ditions just described. Following the usual argument we conclude that

Z„ = gp{5} is co-free.

Now, suppose sEZk and sp = i for some ££co. Then 1 = [sp, t] for

each ¿Ggp{5}. [sp, t]=[sp-\ t]'[s, t]=[s"-\ t][[sp~\ t], s][s, t].

However, [s^1, t]EZk_x so that [[sp-\ t], s]EZk^2. Thus, 1 = [sp, t]

= [sp_1, t][s, t]sx where SxEZk-i. Proceeding in this way we finally

have 1 = [sp, t] = [s, /]ps2 for some S2EZk-2. But, under the induction

assumption, Z*_2 is an co-subgroup of Zk-x so that [s, t]EZk-2 and 5

must now be an element of Zk~x, which is assumed to be co-free. Hence,

sp = 1 implies s = 1 and Zk is co-free.

We follow a similar argument to show that Zjt_i is an co-subgroup

of Z*.

A3. A class n semigroup is Ua if and only if gp {5} is co-free.

Part A2 tells us that gp {5} is co-free if 5 is a Ua semigroup. On the

other hand, suppose 5 is not Ua. Then there exist x, yES, x^y, and

pEo) with xp = yp. But, following a statement of P. Hall [2], xy1 has

order dividing a power of p. Consequently, gp{5} is not co-free.

The following corollary of A3 is an important statement on Ua

groups and is attributed to Mal'cev and Cernikov in Baumslag [l].

A4. A nilpotent group G is a Ua group if and only if it is w-free.

A5. Theorem A. A class n semigroup is a U„ semigroup if and only

if it generates a Ua group.
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It is clear that if S is a subsemigroup of a t/u group then S is also

Ua. The converse is obtained as a consequence of parts A3 and A4.

Proof of Theorem B.

Bl. If S is an Ea subsemigroup of a commutative group, then

H=gp{S}isE„
Since gp{5} =5S~1, consider xy_1Ggp{-S} for some x, yES and

fix pG». Then, there exist Xi and yi belonging to 5 so that x\ = x and

y\ = y. Thus, xy~l = (xiy^1)* and the conclusion follows.

B2. Theorem B. A class n Ea semigroup generates an Ea group.

Having verified the theorem in the abelian case in part Bl, we

proceed by induction and assume for class «>1 that the conclusion

is valid for Ea semigroups of class less than n.

Let iz" = gp{.S} have lower central series H = H1^H2l^ ■ ■ ■

^ffn+i = {1}. H/H" and, consequently, S/H" have class less than n.

S/H" is clearly E„ so that by the induction assumption 11/H" is an

Ea group. Thus, for hEH and pEu, there exists hiEH so that

hH"=(hiH")p. It follows that h = h\z for some zEH". We know that

H" is generated by all transforms in H of commutators of the form

[ii, • ■ • , in], where sfES, i=\, • • • , n, [2].

Consider the commutator mentioned above. There is a tES so that

sn = tp. Thus, [ii, • • • ,S„_i, sn]= [si, ■ ■ ■ , 5„_l,/p]= [si, • • • ,Sn-l,t]P.

We see that every transform of the commutators under consideration

has £th roots in H". But H" is also central and thus every element

of Hn has a pth root in H".

Let ZiEH" be a pth root of z. Then h = h\z=(hiz-/)p; and iîis an £„

group.

Theorems A and B yield the following:

Corollary C. If S is a class n Da semigroup then S generates a Da

group.

Corollary C. If S is a cancellative Da semigroup satisfying the L„

law, then S generates a class n Da group.
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