ON ROOTS AND SUBSEMIGROUPS OF NILPOTENT GROUPS

JOSEPH E. KUCZKOWSKI

ABSTRACT. E_{ω} , U_{ω} and D_{ω} semigroups are defined by extrapolating the definitions of their group counterparts; and a class n semigroup is defined to be a subsemigroup of a class n group. The purpose of this paper is to show that a class n E_{ω} semigroup generates an E_{ω} group and that a class n semigroup is U_{ω} if and only if it generates a U_{ω} group.

 E_{ω} , U_{ω} , and D_{ω} semigroups are defined in a manner similar to the group definitions presented by G. Baumslag [1]. Thus, let ω be a nonempty fixed set of primes. A semigroup S is an E_{ω} semigroup if for any $s \in S$ and $p \in \omega$ there exists $t \in S$ so that $s = t^p$. S is a U_{ω} semigroup if pth roots are unique when they exist. If S is both E_{ω} and U_{ω} , then S is called a D_{ω} semigroup.

The properties of existence and uniqueness of roots are investigated with respect to subsemigroups of class n nilpotent groups (referred to as class n semigroups) and the subgroups which these semigroups generate.

The purpose of this paper is to prove the following two theorems:

THEOREM A. A class n semigroup is a U_{ω} semigroup if and only if it generates a U_{ω} group.

Theorem B. A class n E_{ω} semigroup generates an E_{ω} group.

REMARK 1. The converse of Theorem B is not available. Consider, for example, the semigroup Q' of rational numbers q, $q \ge 1$, under addition. Q' is not divisible, but it generates the divisible group of additive rationals.

REMARK 2. Referring to the paper of B. H. Neumann and T. Taylor [3] on subsemigroups of nilpotent groups, Theorems A and B may be recast as follows:

THEOREM A'. A cancellative semigroup satisfying the L_n law is U_{ω} if and only if it generates a class n U_{ω} group.

THEOREM B'. An E_{ω} cancellative semigroup satisfying the L_n law generates a class $n E_{\omega}$ group.

Received by the editors April 15, 1970.

AMS 1969 subject classifications. Primary 2040, 2092, 2093.

Key words and phrases. E_{ω} semigroup, U_{ω} semigroup, D_{ω} semigroup, ω -free group, ω -subgroup.

PROOF OF THEOREM A.

A1. If S is a class n U_{ω} semigroup in a group G, then the center of the group generated by S, $Z(gp\{S\})$, is ω -free i.e. having no elements of order p for any $p \in \omega$.

According to Neumann-Taylor [3], $gp\{S\} = SS^{-1} = S^{-1}S$. Thus, suppose $s_1s_2^{-1} \in Z(gp\{S\})$ for some s_1 , $s_2 \in S$ and that $(s_1s_2^{-1})^p = 1$, where p is some element of ω and 1 is the identity of G. Now, s_1 and s_2 commute so that $s_1^p = s_2^p$. Since S is U_{ω} , $s_1 = s_2$ and $s_1s_2^{-1} = 1$.

A2. If S is a class n U_{ω} semigroup in a group G, then $gp\{S\}$ is ω -free.

Suppose the upper central series for $gp\{S\}$ is $\{1\} = Z_0 \le Z_1 \le \cdots \le Z_n = gp\{S\}$. Z_1 is the center of $gp\{S\}$ and, according to part A1, is ω -free. Since Z_1 is abelian, it is clearly a U_ω subgroup so that the identity subgroup Z_0 is an ω -subgroup of Z_1 . Here we may recall that a subgroup H of a group H is called an H-subgroup of H if the relation H implies H for any pair H and H, with H and H implies H for any pair H and H implies H implies H for any pair H and H implies H implies H for any pair H and H implies H implies H for any pair H and H implies H implies H for any pair H and H implies H implies H implies H for any pair H and H implies H implies H implies H for any pair H and H implies H impl

Let us proceed by induction and assume for each pair $\{Z_{i-1}, Z_i\}$, $i=1, \dots, k-1$, that Z_i is ω -free and Z_{i-1} is an ω -subgroup of Z_i . It may then be shown that for i=k, the pair $\{Z_{k-1}, Z_k\}$ fulfills the conditions just described. Following the usual argument we conclude that $Z_n = \operatorname{gp} \{S\}$ is ω -free.

Now, suppose $s \in Z_k$ and $s^p = 1$ for some $p \in \omega$. Then $1 = [s^p, t]$ for each $t \in gp\{S\}$. $[s^p, t] = [s^{p-1}, t]^s[s, t] = [s^{p-1}, t][[s^{p-1}, t], s][s, t]$. However, $[s^{p-1}, t] \in Z_{k-1}$ so that $[[s^{p-1}, t], s] \in Z_{k-2}$. Thus, $1 = [s^p, t] = [s^{p-1}, t][s, t]s_1$ where $s_1 \in Z_{k-2}$. Proceeding in this way we finally have $1 = [s^p, t] = [s, t]^p s_2$ for some $s_2 \in Z_{k-2}$. But, under the induction assumption, Z_{k-2} is an ω -subgroup of Z_{k-1} so that $[s, t] \in Z_{k-2}$ and s must now be an element of Z_{k-1} , which is assumed to be ω -free. Hence, $s^p = 1$ implies s = 1 and Z_k is ω -free.

We follow a similar argument to show that Z_{k-1} is an ω -subgroup of Z_k .

A3. A class n semigroup is U_{ω} if and only if $gp\{S\}$ is ω -free.

Part A2 tells us that $gp\{S\}$ is ω -free if S is a U_{ω} semigroup. On the other hand, suppose S is not U_{ω} . Then there exist $x, y \in S, x \neq y$, and $p \in \omega$ with $x^p = y^p$. But, following a statement of P. Hall [2], xy^{-1} has order dividing a power of p. Consequently, $gp\{S\}$ is not ω -free.

The following corollary of A3 is an important statement on U_{ω} groups and is attributed to Mal'cev and Cernikov in Baumslag [1].

A4. A nilpotent group G is a U_{ω} group if and only if it is ω -free.

A5. THEOREM A. A class n semigroup is a U_{ω} semigroup if and only if it generates a U_{ω} group.

It is clear that if S is a subsemigroup of a U_{ω} group then S is also U_{ω} . The converse is obtained as a consequence of parts A3 and A4. Proof of Theorem B.

B1. If S is an E_{ω} subsemigroup of a commutative group, then $H = gp\{S\}$ is E_{ω} .

Since $gp\{S\} = SS^{-1}$, consider $xy^{-1} \in gp\{S\}$ for some $x, y \in S$ and fix $p \in \omega$. Then, there exist x_1 and y_1 belonging to S so that $x_1^p = x$ and $y_1^p = y$. Thus, $xy^{-1} = (x_1y_1^{-1})^p$ and the conclusion follows.

B2. THEOREM B. A class $n E_{\omega}$ semigroup generates an E_{ω} group.

Having verified the theorem in the abelian case in part B1, we proceed by induction and assume for class n>1 that the conclusion is valid for E_{ω} semigroups of class less than n.

Let $H=\operatorname{gp}\{S\}$ have lower central series $H=H^1 \ge H^2 \ge \cdots$ $\ge H^{n+1}=\{1\}$. H/H^n and, consequently, S/H^n have class less than n. S/H^n is clearly E_{ω} so that by the induction assumption H/H^n is an E_{ω} group. Thus, for $h \in H$ and $p \in \omega$, there exists $h_1 \in H$ so that $hH^n=(h_1H^n)^p$. It follows that $h=h_1^n z$ for some $z \in H^n$. We know that H^n is generated by all transforms in H of commutators of the form $[s_1, \dots, s_n]$, where $s_i \in S$, $i=1, \dots, n$, [2].

Consider the commutator mentioned above. There is a $t \in S$ so that $s_n = t^p$. Thus, $[s_1, \dots, s_{n-1}, s_n] = [s_1, \dots, s_{n-1}, t^p] = [s_1, \dots, s_{n-1}, t]^p$. We see that every transform of the commutators under consideration has pth roots in H^n . But H^n is also central and thus every element of H^n has a pth root in H^n .

Let $z_1 \in H^n$ be a pth root of z. Then $h = h_1^p z = (h_1 z_1)^p$; and H is an E_{ω} group.

Theorems A and B yield the following:

COROLLARY C. If S is a class n D_{ω} semigroup then S generates a D_{ω} group.

COROLLARY C'. If S is a cancellative D_{ω} semigroup satisfying the L_n law, then S generates a class n D_{ω} group.

REFERENCES

- 1. G. Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303. MR 23 #A191.
- 2. P. Hall, Nilpotent groups, Canadian Mathematical Congress Summer Seminar, University of Alberta, 1957.
- 3. B. H. Neumann and T. Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc. Ser. A 274 (1963), 1-4. MR 28 #3100.

PURDUE UNIVERSITY, INDIANAPOLIS, INDIANA 46205