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ABELIAN DIFFERENTIALS WITH DOUBLE ZEROS

HERSHEL M. FARKAS1

Abstract. In this note we give a simple proof of the following

theorem: The locus of points in the Torelli space of compact Rie-

mann surfaces of genus g^2 whose underlying surfaces do not

permit a basis for the abelian differentials of first kind each of

whose elements is a differential with double zeros, has positive co-

dimension in the Torelli space.

Introduction. One of the questions which seems to have occupied

people in the late nineteenth century is the question of the existence

of a basis for the abelian differentials of first kind on a compact

Riemann surface of genus g each of whose elements consists of a

differential with double zeros. It would seem as though this question

has never been answered. Here we prove the following theorem: The

locus of points in the Torelli space of compact Riemann surfaces of

genus g whose underlying surfaces do not permit a basis for the

abelian differentials of first kind each of whose elements is a differ-

ential with double zeros, has positive codimension in the Torelli

space. In other words, using the language of [Fl], the property of

not permitting such a basis is special in the sense of moduli.

The proof of this theorem follows quite simply from a slight gen-

eralization of a theorem of Lewittes [L, Theorem 12] suggested by

Accola during a seminar talk given by the author on this question

and ideas in [R]. The author would like to thank Professor H. E.

Rauch for bringing this question to his attention and also for his

many helpful suggestions.

If 5 is a compact Riemann surface of genus g^2 with canonical

homology basis (T, A),T=ylt • ■ ■ , ya, A = 5i, • • -, 80, and «i, • • •,

«„ is the normal basis for the space of abelian differentials of first

kind on S with respect to T, A i.e.: /T/ w, = o¿y, we obtain a gXg sym-

metric matrix

II = (n„)    where    Ily =  |   co,    and    Im II » 0.

The collection of all such matrices, gXg symmetric  with positive
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definite imaginary part is called the Siegel upper half plane of degree

g and is denoted by ©„. The gX2g matrix (ITl) where J is the gXg

identity matrix is called the period matrix for wi, • • • , ug, and the

space of abelian differentials of first kind will be denoted by Ai.

The Riemann theta function

0(f, H) = Y. exP 2ffi[§ATIiV + Nf],
Nez«

where f EC", N an integer vector in C" and IIE©s is a holomorphic

function on OX©s and in particular for a fixed IIE ©j, is an entire

function on C.

Given a compact Riemann surface and II constructed as above, we

may view the Riemann theta function as a multiplicative function

on the Riemann surface 5. More specifically, we choose a point

poES and consider the map 0°:S—>C defined by

-Po

One sees immediately that the map is not well defined for it depends

on the path of integration. Since any two images of a point can

differ only by an integral linear combination of the columns of the

period matrix we identify all such points in C°. C" under this inden-

tification is called the Jacobi Variety of 5 and is denoted by J(S).

The map </>° is now a well defined map from S—*J(S). The map <p°

is immediately extendable to divisors on S. The definition is the

natural one. If 5 =£?1 • • • ptk is a divisor on S, <p°(ô) = Yi*=i onfp°(pi).

We now consider 6(<p°(p), II) or more generally 8(<p°(p) —e, II)

for any e£C". For a modern presentation of the theory of the Rie-

mann theta function the reader should consult [L]. The properties

of the theta function that we shall need are the following: Either

6(<p°(p)—e, II) is identically equal to zero on 5 or else 6((p°(p) —e, II)

has precisely g zeros on S, pi ■ ■ ■ p9. In the latter case denoting the

divisor of zeros by 5 we have (pa(o)-\-K" = e where K° is a vector of

constants in C" depending only on po and T, A, and = means equal-

ity in J(S). Another property that we shall need is that 0(e) = 0 if and

only if there is an integral divisor A on 5 of degree g — 1 and e=c/>°(A)

-\-K° for some point poES. Actually, it is shown in [L] that if

e=<p°(A)+K° then e^cb^ty+K' where the superscript i means

that a point pi has been chosen in the definition of the map <b from

S—>J(S). Finally we remark that the order of vanishing of 0 at e is

given by -¿(A) =dim Q(A) and fl(A) = {uEAi such that the divisor of

w is a multiple of A].
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Theorem 1. Let h = px ■ ■ • pg~x be any integral divisor of

degree g — 1 on S with the property that i(d) = l. Let a>£ß(o). Then

w=XX)?=i (3ö/3f)(-c)w„ where e=<f>io)+K.

Note. In the final statement of the theorem we have e=<j>iS)+K

without any superscript on <p or K. This is all right since 5 is an inte-

gral divisor of degree g — 1 and hence e is determined independent

of the base point in the definition of <p.

Proof. We shall first prove this theorem under the assumption

that pi^pj for iv^j which is precisely Theorem 12 in [L]. Since

i(b) = l, the space £2(5) is 1-dimensional and hence there is a unique

integral divisor ô' of degree g —1 such that i(S5') = l. Therefore S5'

is the divisor of an coG^iand we claim that co=\J^_T (dQ/dÇ3)( — e)o)j

where e=<p(8)+K. To show that this is actually the case, consider

6(4>°(p)—e, 7r). By the Riemann vanishing theorem [L, Theorem 8]

we have 6(<p°(p)—e, tt)^0 on 5 and hence (dd/dÇj)( — e)?i0 for some

j = 1, • • ■ , g. Therefore w is not the zero differential. We show that

thedivisor of wE£2(ô) ie: u vanishes at p,, i= 1, • • • ,g — 1.

To this end let pi be a point in 5. Then e=<pi(o)+Ki and e=(pi(pi)

+<p'(o)+K< since <£*'(£,) =0. Consider now 6((piip)—e, tt). There are

two possibilities. Either 0(f/>l'(p) —e, tt) =0 on 5 or else 8i<p'ip) —e, tr)

has precisely g zeros on 5 with a double zero at pi. In the former

case we simply expand 6(4>i(p) — e) in a Taylor series in a local param-

eter Z at pi and obtain

6(4>KP) - e, x) = 6(-e) + ( ¿ (-^- (-e)càj(pA Z + 0( | z |2)).

If 6(<pi(p)—e, 7r)= 0, all coefficients of the expansion vanish and

hence in particular

»    dd
£—(-*)«,•(#*) =0.
y=i oÇj

In the latter case since 8(<pi(p)—e, ir) has a double zero at pi the

coefficient of Z surely vanishes giving us the desired result. We re-

mark that what has been shown here is simply that w(pi)=0 for

piEà. This in no way depended on the fact that pi^pj for if*j. The

condition of pi^pj for i^j however does tell us that the divisor of

w is actually a multiple of 5. If pi = pj for i¿¿j the preceding argument

would not guarantee that co have a multiple zero at pi.

In order to remove the restriction of pi^pj for iftj we consider an

arbitrary integral divisor of degree g — 1, f = />?' • • • pf', ¿(f) = 1. If
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e=<p(Ç)-\-K and co = Y (30/df3-)( — e)ui we would like to show that

the divisor of co is a multiple of f. We may view f as a point in S,-i,

the g — 1 fold symmetric product of 5 with itself. In any neighborhood

of f ESg-i we can find points p[ ■ • • p'g-i with pi^pj for ¿pf/" and

¿(£i • • " P'g~i) — L Letting e' =<p(p[ ■ ■ ■ p'„)+K by our previous result

we know that the divisor of co' = Y OW^f¡) (— e')«; is a multiple

of £i • ■ ■ p's-i. Choosing therefore a sequence of points f'£S„_i

converging to f we have co' converging to co and this yields the result.

II. In this section we wish to apply the result of the previous

section to establish the existence of a basis for Ai each of whose

elements is a differential with double zeros. In order to do this we

shall define a more general theta function than we have used till this

point.

Definition 1. The first order Riemann theta function with char-

acteristic

[,]-[*;•"•":Le J       Lei, ■ • • , eg

is defined by the following series which converges absolutely and

uniformly on compact subsets of OX©,,.

+(» + T)(f + 4)]
where [',>] is a 2Xg matrix of integers.

The function 0 [*'](£", II) is an even or odd function of f according

to e-e' = Q or 1 mod 2. The reader will observe that the Riemann

theta function defined in the previous section is 0[o](f> n). Once

again for a survey of the theory of theta functions with characteris-

tics the reader is referred to [F2].

Definition 2. A half period in J(S) is a point eEJ(S) such that

2e = 0.

It is therefore clear that each half period in J(S) can be written as

i[€;e(i)+ . . . +eje(i)+ein<»+ • • . -t-ejl'"'] where e(<> is the *th

column of the gXg identity matrix I and ir0 is the ith column of II.

We shall denote the above half period by

\t /       \eu •■,€(, )'
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Adopting this notation it is clear that0|}](f,II) = E(f,II)0(f + G0),IT)
where E is some exponential factor. Hence when one is only in-

terested in the zeros of the theta functions it suffices to simply study

the theta function with characteristic [o] and its translates.

In particular let us consider now an odd theta function 0|y ](f, II).

Clearly 0['-](O, II) =0 since an odd function vanishes at the origin.

By our above remarks however, we also have that 6(('-), II) =0 for

('») on odd half period. Oddness or evenness of a half period ('-) is

determined by e-e'.

It therefore follows that for each odd half period ('-) we have

0((éO, n)=0 and therefore by the remarks in §1 we have

(s)=<p(8)+K, 5 an integral divisor of degree g — 1 on S. Further-

more, in [Fl ] it is shown that except for a set of positive codimension

in the Torelli space i(8) = 1. We finally remark that for any odd half

period ({-) and associated divisor 8 we have 82 is the divisor of an ele-

ment of A\.

Theorem 2. Let ('t>)x, ■ ■ ■ , ('>)„ be any g odd half periods with the

property that ('')» has a (\) in the ith column and no other (J) columns.

Let

♦'-£f(-C),n)"*
Then except for a set with positive codimension in the Torelli space the

4>i are linearly independent, hence a basis for Ax and each <p, is a differ-

ential with double zeros.

Proof. Since 0 ((«<),■, II) =0 for each i we have that (J<)< =4>(8i)+K

and the results of [Fl] give that except for a set of positive codi-

mension in Torelli space i(8,) = 1. Hence we can apply Theorem 1 and

obtain

*'-S^(-C),'n)"'-

By Theorem 1 the divisor of cp. is a multiple of 5¿ and since i(8¡) = 1,

éi is a basis for Q(5¡). We know however that 82 is the divisor of

some element of Ax [F2]. Therefore, the divisor of <£,- is 82 and hence

each <pi is a differential with double zeros. It remains to show that

<pi, i= 1, • • ■ , g, are linearly independent.

Clearly, the differentials (pi, i = 1, • • ■ , g, are linearly independent

if and only if the matrix
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deH»
àSi

i,j = 1,

is nonsingular or what is of course the same thing

K-C),'n)
det

àSi
9*0.

Since det(dd(—('t>)i, n)/dfy) is a holomorphic function on @„ and

also on the subset of ©„ which may be identified with the Torelli

space it suffices to prove that the determinant is not identically zero

on the Torelli space. For, since the determinant is not identically

zero its zero set has positive codimension which is of course the

statement of the theorem. It therefore suffices to find a point in

Torelli space such that at that point

det

de(-CWI
ai i

9¿0.

In order to find such a point we consider a point IIoG©» which is a

diagonal matrix with diagonal entries un, • • • , TLaa. From the

definition of the theta function one sees immediately that

0(fi, ■ ■ •^ç.Uo) = IL OÜi, Tía),
y=i

where each factor of the product is a theta function with g = 1, and

hence

ô6(ïi, ■ • •, f„ n„)     d$ i      »
-= — (r*» n«) ——— IT »(Tj, %).

3ft 0(ft, Htt) y-i3ft

We shall now show that

det

«(-Q.n.) 1
díi

9*0.

Using the definition of ('-) ¿ and the preceding remarks we see imme-

diately that
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(-0.-*)de

de
(-(:;)-)

di-j

(-0,-)ey
ê'(-Q~)

and hence unless ¿=7 we have 0( — ('*,), 11«) appearing in the product

and this term in zero since (£,)<=(}) which is an odd half period for

the theta function 0(f, II«). It is therefore clear that the matrix in

question is a diagonal matrix with diagonal entries

06(-0,-)
5ft

de

which equals

de

(-(!)•*•)

dfk
'(-(;>*.)

S'(-CM

¡),n„)

¡>f
|), n„)

s O,-)
where the last equality follows from the evenness of the theta func-

tion. By construction all the terms in the product which do not get

cancelled are theta functions of one variable evaluated at even half

periods. It is well known that the only zeros of a theta function of

one variable occur at the odd half period hence none of those

terms vanish. The only remaining thing to be checked is that

30((1), ILiO/dfiT^O, for then since no term on the diagonal vanishes

the determinant does not vanish. We observe however that

8 [ j] (f, Ukk) = exp 2« [5p + | + 1] e (f + Q, u^.
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(See remarks after Definition 2.) Therefore,

del l(r,n**)

3f
= exp 2-m-

L 8 2        4j

dö(r + (l)'n**)

3f

and in particular we have

XÍ9(r + (l),n")J

30O'""1 rn„     ,-,   KC)'n")
'Lt+tJ«■ exp 2«

3f L 8        4 J 3f

We finally remark that d0[J](O, II)/r)f is known to be nonzero for

any ne©! [SG, p. 268] and hence we have Ö0((i), ILt)/df ;¿0.
We have therefore shown that the determinant in question is not

zero at n0 a diagonal matrix. Since every neighborhood of a diagonal

matrix contains points of the Torelli space, we have by continuity,

that the determinant in question does not vanish for some II in the

Torelli space and by our initial remarks the theorem is proven.

Finally we remark that the same methods yield a proof of the

fact that the vanishing of an even theta constant is special in the

sense of moduli (see [Fl]).

The same procedure used here will show that 0[° '. '. '. °](0, II) is not

zero in a neighborhood of a diagonal matrix in ©„. Hence

0[o---o](0, n) is not identically zero on <&g and therefore one gets the

result that the vanishing is special in the sense of moduli.

Since one can go from any even theta constant to the above theta

constant by linear transformation the result is established in general.
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