ARCS IN HYPERSPACES WHICH ARE NOT COMPACT

L. E. WARD, JR.1

ABSTRACT. It has been known for many years that if X is a metrizable continuum then 2^x (the space of closed subsets of X) and C(X) (the subspace of connected members of 2^x) are arcwise connected. These results are due to Borsuk and Mazurkiewicz [1] and J. L. Kelley [2], respectively. Quite recently M. M. McWaters [6] extended these theorems to the case of continua which are not necessarily metrizable, using Koch's arc theorem for partially ordered spaces [3], [8]. In this note we prove these results for certain noncompact spaces by means of a simple generalization of Koch's arc theorem.

1. **Introduction.** Recall that if X is a topological space then 2^{X} denotes the space of nonempty closed subsets of X with the Vietoris topology [7]. That is, if U_1, U_2, \cdots, U_n are subsets of X we write

$$\langle U_1, U_2, \cdots, U_n \rangle = \left\{ A \in 2^{X} : A \subset \bigcup_{i=1}^{n} \left\{ U_i \right\} \text{ and } \right.$$

$$A \cap U_i \neq \emptyset \text{ for each } i = 1, 2, \cdots, n \right\}$$

and the family of all $\langle U_1, U_2, \dots, U_n \rangle$ with U_i open is a base for the open sets. The subspace of all closed and connected sets is denoted C(X).

In this note our principal result is a partial extension of the recent theorem of McWaters [6], that if X is an arbitrary continuum, then 2^{x} and C(X) are arcwise connected.

THEOREM 1. If X is a locally compact, locally connected and connected Hausdorff space, then 2^{X} is arcwise connected. If, in addition, X is a normal space then C(X) is arcwise connected.

At the end of the paper we give an example which shows that the hypothesis of local connectivity cannot be omitted.

It is a pleasure to express my appreciation to Professor Sam B. Nadler, Jr. who rekindled my interest in hyperspaces through several conversations and a lively correspondence.

Received by the editors January 5, 1970.

AMS 1969 subject classifications. Primary 5455; Secondary 0620, 5456.

Key words and phrases. Hyperspace, arc, partially ordered space.

¹ This research was supported by a grant from the National Science Foundation.

2. A theorem on partially ordered spaces. A partially ordered space is a topological space S with a partial order Γ which is a closed subset of $S \times S$. We treat the symbols $y \le x$, $y \in \Gamma x$, $x \in y\Gamma$ and $(y, x) \in \Gamma$ as synonyms. Of course y < x means that $y \le x$ and $y \ne x$. A zero of a partially ordered space S is an element $0 \in S$ such that $0\Gamma = S$.

McWaters' proof of arcwise connectivity depended on showing that if X is a continuum then 2^{X} and C(X) can be regarded as partially ordered spaces which satisfy the following form of Koch's arc theorem [3], [8]: if S is a compact partially ordered space with zero and if Γx is connected for each $x \in S$, then each nonzero element of S is the supremum of an order arc containing the zero. For the applications of interest to us, a stronger version of Koch's theorem is required.

THEOREM 2. Let S be a partially ordered space with zero, and suppose that for each nonzero $x \in S$ there exists y < x such that if $y \le t \le x$ then $y \Gamma \cap \Gamma t$ is a continuum. If each nonempty chain of S has an infimum then S is arcwise connected.

PROOF. Let 0 be the zero of S and let $x \in S - \{0\}$. By hypothesis there exists y < x such that $y \Gamma \cap \Gamma x$ is compact and $y \Gamma \cap \Gamma t$ is connected for each $t \in y \Gamma \cap \Gamma x$. Therefore, $y \Gamma \cap \Gamma x$ satisfies the hypotheses of Koch's arc theorem and there is an order arc whose supremum is x and whose infimum is y. Let A be the union of a maximal nest of order arcs each of which has x for its supremum. By hypothesis A has an infimum, and by a simple maximality argument that infimum is 0. Thus each element of $S - \{0\}$ is joined to 0 by an arc.

3. Proof of the main result. We shall develop a series of lemmas which culminates in a proof of Theorem 1.

LEMMA 1. If X is a normal space then C(X) is a closed subset of 2^{X} .

A proof of Lemma 1 is given in [5, p. 139]. We define a relation g on 2^{x} (the *inclusion* relation) by $(A, B) \in g$ if and only if $A \supset B$. Consistent with the notation for partial orders in §2 we also write

$$\mathfrak{s}B = \left\{ A \in 2^{\mathfrak{X}} : (A, B) \in \mathfrak{s} \right\}$$

and As is defined dually. Note that relative to the partial order s, X is a zero for 2^x .

For an alternate proof of Lemma 2, see [4, p. 167].

LEMMA 2. If X is a regular space then \mathfrak{s} is a closed subset of $2^x \times 2^x$.

PROOF. If $(A, B) \in 2^x \times 2^x - g$ then there exists $b_0 \in B - A$ and since X is regular there are disjoint open sets U and V such that $b_0 \in U$ and $A \subset V$. Note that $N(A) = \langle V \rangle$ is a neighborhood of A. If A and B have

a point in common we set $N(B) = \langle U, X - A, V \rangle$ and otherwise $N(B) = \langle U, X - A \rangle$. In either case N(B) is a neighborhood of B and $N(A) \times N(B)$ contains no member of \mathfrak{g} .

LEMMA 3. If \mathfrak{A} is a nonempty nest which is a closed subset of $2^{\mathfrak{X}}$ or C(X) then $C(\mathfrak{U}\mathfrak{A}) \in \mathfrak{A}$.

PROOF. Obviously $Cl(U\mathfrak{N}) \in 2^x$ and if $\mathfrak{N} \subset C(X)$ then $Cl(U\mathfrak{N}) \in C(X)$. If $Cl(U\mathfrak{N}) \in \langle U_1, U_2, \cdots, U_n \rangle$ where the U_i are open subsets of X then $U\mathfrak{N}$ meets each U_i and hence there exists $N \in \mathfrak{N}$ such that $N \in \langle U_1, U_2, \cdots, U_n \rangle$. Since \mathfrak{N} is closed the lemma follows.

LEMMA 4. If X is a locally compact, locally connected and connected Hausdorff space and if $Y \in 2^x - \{X\}$ then there exists $Z \in \mathscr{S}Y - \{Y\}$ such that if $R \in Z\mathscr{S} \cap \mathscr{S}Y$ then $Z\mathscr{S} \cap \mathscr{S}R$ is a continuum.

PROOF. Since $Y \neq X$ there exists $y_0 \in Y \cap \overline{X - Y}$, and since X is locally connected there exists a continuum N which is a neighborhood of y_0 . Hence $Z = N \cup Y$ is a member of $gY - \{Y\}$. Further if $R \in Zg \cap gY$ (that is, if $R \in Z^g$ and $Z \supset R \supset Y$) then we can define $\phi: 2^N \to 2^X$ by $\phi(A) = A \cup R$. It is easy to see that ϕ is continuous [4, p. 106]; moreover the range of ϕ is precisely $Zg \cap gR$. Since 2^N is a continuum, so is $Zg \cap gR$.

LEMMA 5. Let X be a locally compact, locally connected, connected normal Hausdorff space. If $Y \in C(X) - \{X\}$ then there exists $Z \in (gY - \{Y\}) \cap C(X)$ such that if $R \in C(Z) \cap gY$ then $C(R) \cap gY$ is a continuum.

PROOF. As in the proof of Lemma 4 there exists a continuum Nwhich meets both Y and X - Y. In fact, we may assume that N is a locally connected continuum. Let $Z = N \cup Y$ and define $\phi: 2^N \rightarrow 2^X$ by $\phi(A) = A \cup Y$. Again ϕ is continuous and since 2^N is compact it follows that $Z\mathfrak{g} \cap \mathfrak{g} Y$ is compact. If R is a connected member of $Z\mathfrak{g} \cap \mathfrak{g} Y$ then by Lemma 2, Rs is closed in 2^{x} and hence, by Lemma 1, $C(R) \cap sY$ is compact. Now suppose $C(R) \cap gY$ is not connected. Then it is the union of disjoint closed sets P and Q and we may suppose $R \in P$. Since Q is a compact partially ordered space it contains an g-minimal element K. (That is, K is a member of Q which is properly contained in no member of Q.) Then there are open subsets U_1, U_2, \cdots, U_n of X such that $K \in \langle U_1, U_2, \cdots, U_n \rangle$ and $\langle \overline{U}_1, \overline{U}_2, \cdots, \overline{U}_n \rangle \cap P$ is empty. Now choose $r \in R - K$; since R is locally compact and connected and since R-K has compact closure, there exists a continuum $B \subseteq R$ which contains r and meets K. Let $U = U_1 \cup U_2 \cup \cdots \cup U_n$ and let K_1 be the closure of a component of $B \cap U$ which meets K. It

follows that $K \subsetneq K \cup K_1 \subset R$ and $K \cup K_1 \in \langle \overline{U}_1, \overline{U}_2, \dots, \overline{U}_n \rangle$. But then $K \cup K_1$ is a member of Q which contains K properly, and this is a contradiction. This completes the proof that $C(R) \cap \mathcal{S} Y$ is a continuum.

Theorem 1 now follows directly from Theorem 2 and the lemmas. If X is a locally compact Hausdorff space then by Lemma 2, 2^X is a partially ordered space. It has a zero, X, and by Lemma 3 each chain of X has an infimum. If X is connected and locally connected then by Lemma 4 the remaining hypotheses of Theorem 2 are satisfied. If X is also a normal space then Lemma 5 can be invoked instead of Lemma 4 to apply Theorem 2 to C(X).

If X is not locally connected but satisfies all other hypotheses of Theorem 1 then it may happen that neither 2^X nor C(X) is arcwise connected. To see this we recall an example from R. L. Wilder's book [9, p. 102]. In the Cartesian plane let $C = \{(-1, y): 0 \le y\}$, $L = \{(1, y): 0 \le y\}$, let P_n denote the line segment joining (-n/(n+1), 0) to (0, n) and let Q_n denote the line segment joining (0, n) to (1, 0). If we set

$$X = C \cup L \cup \bigcup_{n=1}^{\infty} \{P_n \cup Q_n\}$$

then X is a locally compact, connected Hausdorff space which is not locally connected. Now let $U = \{(x, y) \in X : (x+1)(y+1) < 1\}$ so that U is an open set which contains C and which meets each of the sets P_n . If α is an arc in 2^X whose endpoints are C and X and if β is the closure of the component of $\alpha \cap \langle U \rangle$ which contains C, then β is an arc whose endpoints are C and some $B_1 \subseteq 2^X$ where $B_1 \subset \overline{U}$. Consequently $B_1 \cap P_n \cap \overline{U}$ is not empty, for some n. In the natural ordering of β from C to B_1 there is a first element which meets $P_n \cap \overline{U}$, say B_0 . Let V be an open subset of X which contains $P_n \cap \overline{U}$ but is contained in the complement of C and of each P_k $(k \neq n)$. Then $B_0 \subseteq \langle X, V \rangle$ and since $\langle X, V \rangle$ is open in 2^X there exists B between C and B_0 in the arc β with $B \subseteq \langle X, V \rangle$. Since $B \subset U$ it follows that B meets $P_n \cap \overline{U}$, and this contradicts the properties of B_0 .

REFERENCES

- 1. K. Borsuk and S. Mazurkiewicz, Sur l'hyperspace d'un continu, C. R. Soc. Sci. Varsovie 24 (1931), 149-152.
- 2. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 23-36. MR 3, 315.
- 3. R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723-728. MR 21 #7269.

- 4. K. Kuratowski, *Topology*. Vol. I, rev. ed., Academic Press, New York; PWN, Warsaw, 1966. MR 36 #839; 840.
- 5. ——, Topology. Vol. II, rev. ed., Academic Press, New York; PWN, Warsaw, 1968.
- 6. M. M. McWaters, Arcs, semigroups and hyperspaces, Canad. J. Math. 20 (1968), 1207-1210. MR 37 #6914.
- 7. E. A. Michael, *Topologies on spaces of subsets*, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 13, 54.
- 8. L. E. Ward, Jr., Concerning Koch's theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347-355. MR 31 #6206.
- 9. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R. I., 1949. MR 10, 614.

University of Oregon, Eugene, Oregon 97403