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ARCS IN HYPERSPACES WHICH ARE NOT COMPACT

L. E. WARD, JR.1

Abstract. It has been known for many years that if X is a

metrizable continuum then 2X (the space of closed subsets of X)

and C(X) (the subspace of connected members of 2X) are arcwise

connected. These results are due to Borsuk and Mazurkiewicz [l ]

and J. L. Kelley [2], respectively. Quite recently M. M. McWaters

[6] extended these theorems to the case of continua which are not

necessarily metrizable, using Koch's arc theorem for partially

ordered spaces [3], [8]. In this note we prove these results for

certain noncompact spaces by means of a simple generalization of

Koch's arc theorem.

1. Introduction. Recall that if X is a topological space then 2X

denotes the space of nonempty closed subsets of X with the Vietoris

topology [7]. That is, if Ux, Ui, ■ ■ ■ , U„ are subsets of X we write

(Ux, Ui, ■ ■ ■ , Un) = ÍaE 2*:A C Û   {Ut} and
' ¿=1

A f~\ Ui ^ 0 for each i = Í, 2, ■ ■ ■ , n>

and the family of all {Ux, U2, • • • , U„) with Ui open is a base for the

open sets. The subspace of all closed and connected sets is denoted

C(X).
In this note our principal result is a partial extension of the recent

theorem of McWaters [ó], that if X is an arbitrary continuum, then

2X and C(X) are arcwise connected.

Theorem 1. If X is a locally compact, locally connected and con-

nected Hausdorff space, then 2X is arcwise connected. If, in addition, X

is a normal space then C(X) is arcwise connected.

At the end of the paper we give an example which shows that the

hypothesis of local connectivity cannot be omitted.
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2. A theorem on partially ordered spaces. A partially ordered space

is a topological space 5 with a partial order T which is a closed subset

of SXS. We treat the symbols y^x, yETx, xEyT and (y, x)ET as

synonyms. Of course y<x means that y^x and y^x. A zero of a

partially ordered space 5 is an element 0G5 such that Or = 5.

McWaters' proof of arcwise connectivity depended on showing

that if X is a continuum then 2X and C(X) can be regarded as par-

tially ordered spaces which satisfy the following form of Koch's arc

theorem [3], [8]: if S is o compact partially ordered space with zero

and if Tx is connected for each xES, then each nonzero element of S is

the supremum of an order arc containing the zero. For the applications

of interest to us, a stronger version of Koch's theorem is required.

Theorem 2. Let S be a partially ordered space with zero, and suppose

that for each nonzero xES there exists y<x such that if y = /=x then

yTf~\Tt is a continuum. If each nonempty chain of S has an infimum

then S is arcwise connected.

Proof. Let 0 be the zero of 5 and let xES— {o}. By hypothesis

there exists y<x such that yr/^rx is compact and yTC\Tt is con-

nected for each tEyTf\Tx. Therefore, yrnrx satisfies the hypotheses

of Koch's arc theorem and there is an order arc whose supremum is

x and whose infimum is y. Let A be the union of a maximal nest of

order arcs each of which has x for its supremum. By hypothesis A has

an infimum, and by a simple maximality argument that infimum is

0. Thus each element of 5— {0} is joined to 0 by an arc.

3. Proof of the main result. We shall develop a series of lemmas

which culminates in a proof of Theorem 1.

Lemma 1. If X is a normal space then C(X) is a closed subset of 2X.

A proof of Lemma 1 is given in [5, p. 139]. We define a relation â

on 2X (the inclusion relation) by iA, B)E& if and only if ADB.

Consistent with the notation for partial orders in §2 we also write

SB = {A E2x:iA,B) 6i|

and AS is defined dually. Note that relative to the partial order â, X

is a zero for 2X.

For an alternate proof of Lemma 2, see [4, p. 167].

Lemma 2. If X is a regular space then â is a closed subset of 2X X2X.

Proof. If iA,B)E2xX2x-0 then there exists b0EB— A and since

X is regular there are disjoint open sets U and V such that b0EU and

A C V. Note that NiA) = {V) is a neighborhood of A. If A and B have
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a point in common we set N(B) = {U, X — A, V) and otherwise N(B)

= {U, X — A). In either case N(B) is a neighborhood of B and

N(A) XN(B) contains no member of $.

Lemma 3. If 3d is a nonempty nest which is a closed subset of 2X or

C(X)/Ae«Cl(U3l)G9l.

Proof. Obviously Cl (U 91) G 2X and if 91C C(X) then Cl (U 91) G C(X).
If Cl(U9l)G(c7i, Ui, • • • , Un) where the Ui are open subsets of X

then U91 meets each Ui and hence there exists NE"Sl such that

NE(Ux, Ui, ■ • ■ , Un). Since 91 is closed the lemma follows.

Lemma 4. 27 X is a locally compact, locally connected and connected

Hausdorff space and if YE2X— {x} then there exists ZEöY— {Y}

such that if REZdC\dY then Zêi\âR is a continuum.

Proof. Since Yt^X there exists yoEYC\X— Y, and since X is

locally connected there exists a continuum N which is a neighborhood

of y0. Hence Z = NVJ Fis a member of $Y- { Y}. Further if RE\ZâC\é Y

(that is, if RE2X and ZDRDY) then we can define <j>:2N-+2x by

<p(A) =A^JR. It is easy to see that <j> is continuous [4, p. 106]; more-

over the range of <p is precisely Zä(~\äR. Since 2N is a continuum, so

is ZdCMiR.

Lemma 5. Let X be a locally compact, locally connected, connected

normal Hausdorff space. If YE\ C(X) — {X} then there exists Z

E(¿Y- { Y})r\C(X) such that if REC(Z)C\SY then C(R)(~\dYis a
continuum.

Proof. As in the proof of Lemma 4 there exists a continuum N

which meets both Y and X—Y. In fact, we may assume that AT is a

locally connected continuum. Let Z = N\J Y and define <p:2N—*2x by

<p(A) =A\J Y. Again <f> is continuous and since 2N is compact it follows

that ZêC\é Y is compact. If F is a connected member of ZS(~\é Y then

by Lemma 2, Rä is closed in 2X and hence, by Lemma 1, C(R)C\d Y

is compact. Now suppose C(R)C\3Y is not connected. Then it is the

union of disjoint closed sets P and Q and we may suppose i?£?.

Since Q is a compact partially ordered space it contains an ¿-minimal

element K. (That is, K is a member of Q which is properly contained

in no member of Q.) Then there are open subsets Ux, U2, ■ ■ • , Un of

X such that KE(UX, Ut, ■ ■ ■ , Un) and (Ux, V2, ■ ■ ■ , Vn)C\P is
empty. Now choose rER — K; since R is locally compact and con-

nected and since R — K has compact closure, there exists a continuum

BER which contains r and meets K. Let U= U¿JU2\J • • • KJU»

and let K~x be the closure of a component of BH\ U which meets K. It
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follows that K^KVJKiER and K\JKiE(Ui, U2, ■ ■ ■ , Z7„). But
then K\JKi is a member of Q which contains K properly, and this is

a contradiction. This completes the proof that C(R)í^áY is a con-

tinuum.

Theorem 1 now follows directly from Theorem 2 and the lemmas.

If X is a locally compact Hausdorff space then by Lemma 2, 2X is a

partially ordered space. It has a zero, X, and by Lemma 3 each chain

of X has an infimum. If X is connected and locally connected then

by Lemma 4 the remaining hypotheses of Theorem 2 are satisfied. If

X is also a normal space then Lemma 5 can be invoked instead of

Lemma 4 to apply Theorem 2 to C(X).

If X is not locally connected but satisfies all other hypotheses of

Theorem 1 then it may happen that neither 2X nor C(X) is arcwise

connected. To see this we recall an example from R. L. Wilder's book

[9, p. 102]. In the Cartesian plane let C={(-1, y):0gy}, L

= {(1, y) :0^y}, let P„ denote the line segment joining( —ra/(ra+l), 0)

to (0, ra) and let Q„ denote the line segment joining (0, ra) to (1, 0).

If we set

00

X = CUIUU {P„U(2„}
11=1

then A7" is a locally compact, connected Hausdorff space which is not

locally connected. Now let ¡7= {(x, y)EAT:(x+l)(y+l)<l} so that

U is an open set which contains C and which meets each of the sets P„.

If a is an arc in 2X whose endpoints are C and X and if ß is the closure

of the component of ai^(U) which contains C, then ß is an arc whose

endpoints are C and some BiE2x where BiEU. Consequently

BiC\Pnr\U is not empty, for some ra. In the natural ordering of ß

from C to Bi there is a first element which meets Pn/^ U, say B0. Let

V be an open subset of X which contains P„P\ U but is contained in

the complement of C and of each Pk (k¿¿n). Then BoEiX, V) and

since (X, V) is open in 2X there exists B between C and B o in the

arc ß with BE(X, V). Since B EU it follows that B meets P„rW,

and this contradicts the properties of Bo-
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