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THE COMMUTATOR SUBGROUPS OF THE
ALTERNATING KNOT GROUPS

KUNIO MURASUGI

Abstract. The aim of this paper is to show that the com-

mutator subgroup of the alternating knot group is the (proper or

improper) free product of free groups with isomorphic subgroups

amalgamated.

1. Main theorem. A surface SES3 is said to be algebraically

unknotted if 7Ti(53 — S) is free. It was proved by Neuwirth [6]thatany

orientable surface of minimal genus spanned by a fibred knot is al-

ways algebraically unknotted. In this note, the following theorem will

be proved.

Theorem 1. Any alternating knot can span an algebraically un-

knotted orientable surface of minimal genus.

An immediate consequence of this theorem is the following.

Corollary. The commutator subgroup of the knot group of an

alternating knot can be written as

(1) ••• *F *F* F* ■ ■ ■ ,
F   F   F   F

where F is a free group of rank 2g, g being the genus of the knot.

In §3, we construct a (not necessarily alternating) knot whose

group has the commutator subgroup of the form (1).

Throughout this paper, we will use the same notation of [S].

2. Proof of Theorem 1. Let k be an oriented knot of genus g in a

3-sphere S3. Let D be an orientable surface of minimal genus spanned

by k. Therefore, the genus, g(D), of D is g. Let F be a regular neigh-

bourhood of D in S3. D, and hence V, can be deformed into a certain

linear graph L in S3, where the Euler characteristic xiL) of L is given

by 1 — 2g. Then the following lemma is obvious.

Lemma 1. If Lis a planar graph in S3, then Tt-i(S3 — L) is a free group

of rank 1 —x(E), and hence D is algebraically unknotted.
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Now, let ii be a knot diagram of k, p'.S3—>S2 a regular projection,

and p(k)=K. For convenience, we select a "point of infinity"

■x>ES3 — k and consider S3— oo as a 3-space R3. Thus p may be

defined as p(x, y, z) = (x, y) and p( oo ) = oo. A knot diagram is said to

be special if it does not contain Seifert circuits of the second type.

By the primitive genus of a knot diagram K is meant the integer

\ [(number of a-region) — (number of Seifert circuits of the second

type) — l], denoted by g(K). We should note that the main theorem

of [3 ] is the following.

Proposition 1. The primitive genus of an alternating knot diagram

of an alternating knot k is equal to the genus of k.

Now the following lemma is the key to the proof of Theorem 1.

Lemma 2. Let K be a knot diagram of k. Then there exists a knot k' of

the same type as k such that p(k') =K' is special and g(K') =g(K).

Proof. If K is already special, there is nothing to prove. Suppose

that K contains re Seifert circuits of the second type. In the following,

we call them simply S-circuits.

Now we wish to show that k can be deformed to k' isotopically so

that K'=p(k') contains at most re —1 S-circuits and has the same

primitive genus as K.

Since an S-circuit is a simple closed curve in S2, it divides S2 into

two domains. We take an innermost S-circuit, C„ say, in the sense

that one, Rx say, of two domains Rx, F2 in which S2 is divided by Cn,

does not contain other S-circuits. Then without loss of generality we

may assume that Rx contains the origin Oof R2 and any ray from 0

meets Cn at exactly one point. Cn can be described as (x(t), y(t)),

OStlk 1. Choose a sufficiently small positive number X and let C'n be

the closed curve described by ((1-|-X)x(¿), (1+X)y(¿)), O^í^l. From

the assumption on C„, we see that C'„ is a simple closed curve and is

"parallel" to Cn.

Let Pi = (x(ti), y(ti)), i = 1, • • • , re, be distinct double points on C„

which do not belong to Cn. (For the definition, see [5, p. 390].) Then,

in each small neighbourhood Z7< of Pi in S2, C'n intersects with other

S-circuits at two points P[, P'/. Then for small positive numbers

U, Vi, ti — €i and ti+r]i denote /-values of P't and P", respectively.

Define three points A[, B'{, and F,- as follows. For a sufficiently small

positive number e,

AÍ = (x(U — ei — e), y(ti — e{ — «)),

B¡ = (x(ti + Vi + t), y(ti + ví + «)),
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Pt = ((1 - \)xiU), (1 - \)yili)).

Join two pairs of points (A[, P¡) and (B't, Pi) by line segments a'¡ and

b'i, respectively. Note that each of a[, b[ intersects with C„ at only one

point, but not with other S-circuits. Replacing each small arc A'ß^ on

C'n by a broken line c^WôJ, we will obtain a new simple closed curve

C"

Now, take two sufficiently close points A, B on C„, neither of which

is a double point on C„. By applying an obvious isotopy if necessary,

we may assume that two points p-1(A)C\k =a and p~l(B)C\k=b are

the highest points in k and kES2x[ — l, l].

Define a simple closed curve Cn as C'ñ X {1} in S3. Let A ', B' be two

points on C'n with the same ¿-value as A, B and let A0, B0 be the

points on Cn which are "above" A', B'. Join two pairs of points

(a, Ao) and (b, Bo) by line segments a, ß, respectively. Since a, b are

the highest points of k, the replacement of a small arc ab of k by

«Ware AoBo^Jß yields a new knot h of the same type as k. Since C„ is

above k, the further replacement of a small arc A0B0 0l ^ by the com-

plement of arc AoBo in Cn again yields a new knot k' of the same type

as Ji. k' thus obtained is the required knot. To prove this, we first note

that every edge of C„ is always on the boundary of some a-region.

Since C'ñ is sufficiently close to C„, each of those a-regions, except

two regions, which have the same edges of Cn on their boundaries, is

divided into exactly one a-region and one (3-region. Therefore, in K',

the original S-circuit C„ disappears and other S-circuits remain un-

touched. Further, the exceptional regions are those which contain

A, B on their boundaries and these are amalgamated to make one big

a-region in K'. Therefore, the primitive genus of K and K' coincide.

This completes the proof of Lemma 2.

Combining Proposition 1 and Lemma 2, we see that any alternating

knot can be deformed isotopically into a knot k' so that K' =p(k') is

special and g(K') is the genus of k. Using this diagram K', we can

construct an orientable surface D according to Seifert's instruction

given in [7]. Then the genus of D is exactly the primitive genus of K',

and hence, is the genus of k. That is to say, D is an orientable surface

of minimal genus. Finally, it is easy to see (for example, by consider-

ing the graph of knots [l], [2]) that D is deformed into a certain

planar graph in S2.

This together with Lemma 1 imply Theorem 1.

3. A construction of algebraically unknotted surfaces. Although it

is not known whether any knot can span an orientable algebraically
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unknotted surface of minimal genus, we can construct (not necessarily

alternating) knots whose groups have the commutator subgroups of

the form (1).

Take a finite connected planar graph H with vertices vx, ■ ■ ■ , vm

and edges ex, • ■ ■ , e,. We assume that H has no loops and the dual

graph H oí H has even valency.

Now, replace each Vi by a small disk F< and each e¡ connecting vk

and vi by a band E3- twisted once which attaches to two disks Vk and

V¡ as is shown in Figure 1 in [4]. The surface S thus obtained is

orientable, since H has even valency, and 5 bounds a knot, or possibly

a link. 5 is called a generalized primitive s-surface associated with H

(although 5 is not determined uniquely by H). Now, take two general-

ized primitive s-surfaces Si, Si associated with Hi, H2, and identify

two disks, one from each of Si and 52. For the details, refer to [4]. The

resulting orientable surface is called a generalized s-surface. In gen-

eral, by generalized s-surface is meant an orientable surface obtained

from a finite number of generalized primitive s-surfaces by identifying

them through disks in this manner. It is clear that a generalized

5-surface is algebraically unknotted. Further, we can prove:

Theorem 2. Let k be the boundary knot of a generalized s-surface S

obtained from generalized primitive s-surfaces Si, ■ ■ ■ , Sn in some

manner. If each Si is of minimal genus which is spanned by a knot (or a

link), then the knot group of k has the commutator subgroup of the form

(1).

Proof. Although S is algebraically unknotted, we do not know

whether 5 is of minimal genus. However, to prove Theorem 2, it is

sufficient to show that the homomorphism wiiSti—nriiS3— V) induced

by inclusion is a monomorphism, where Sf denotes the "upper"

boundary of V. However, it may be proved in almost the same manner

used in [4], and therefore, will be omitted.

Remark 1. It is easy to construct a generalized primitive 5-surface

satisfying the assumption of Theorem 2. For example, if all bands are

twisted once in the same direction, then the surface obtained satisfies

the assumption.

Remark 2. Every knot in Reidemeister's table spans an alge-

braically unknotted orientable surface of minimal genus.
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