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H2 OF THE COMMUTATOR SUBGROUP
OF A KNOT GROUP

D. W. SUMNERS1

Abstract. A short topological proof is given for the well-known

theorem that if G is a knot group and G' its commutator subgroup,

theniz"2(G';Z)=0.

The purpose of this note is to give a short topological proof of the

following well-known theorem [l], [2], [ô], [7]:

Theorem. If G is a knot group and G' is its commutator subgroup,

thenH2(G';Z)=0.

Proof. Let 5 denote the bounded complement of a tamely em-

bedded S1 in S3. S is a compact 3-manifold-with-boundary, and is

homotopy equivalent to a finite 2-dimensional simplicial complex K.

Let G = ivAK). As is well known [5], K is aspherical (ttí(K) =0, i^2),

hence K is the Eilenberg-MacLane space K(G, 1). Let K denote the

infinite cyclic covering space of K; that is, tti(K) =G' (the commu-

tator subgroup of G), and HAK; Z) =J(t) (the infinite cyclic multi-

plicative group generated by t) acts on K as the group of simplicial

covering translations. K is also aspherical, and is the Eilenberg-

MacLane space for G'.

Let T denote the rational group ring of /(/). Following [3], [4] we

have for all q that the simplicial chain groups Cq(K; Q) are finitely

generated free T-modules, with generators in 1-1 correspondence

with the c?-simplexes of K. Since T is a principal ideal domain, then

HAK; Q) is a f.g. T-module for all q.

Now collapsing out the infinite cyclic group of covering translations

on K yields the orbit space K. Following Milnor [4], this is expressed

algebraically by the short exact sequence of chain complexes (as

T-modules)

0 -* C*(K; Q) —H C*i&; Q) -+ C*iK; Q)-*0

which yields the long exact sequence of homology
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-> HZ(K; Q) -> Bi(K; Q) --> Ht(É; Q) -> H2(K; Q) -► • • • .

Since K is a homology S1, then H2(K; Q)—-^H2(K; Q) is a r-isomor-

phism. K is 2-dimensional, so H2(K; Q) is isomorphic to the sub-

module of 2-cycles of C2(K; Q). T is a PID, so H2(K; Q) is a f.g. free

T-module.

Now the sequence 0—>r ('~ 1)>r—*Q—>Q is exact, and the homo-

morphism (t — 1) respects any direct sum splitting for a T-module,

so (í — Í)'.H2(K; Q)—+H2(K; Q) can be an epimorphism only if

Hi(K; Q) =0. Again, since K is 2-dimensional, H2(K; Z) must be free

abelian, hence by the Universal Coefficient Theorem H2(K; Z)—Q.

Since H2(G'; Z)=H2(K; Z), the theorem is proved.
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