
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 28, No. 1, April 1971

AN EXTREMAL PROPERTY OF
STOCHASTIC INTEGRALS

STEVEN ROSENCRANS

Abstract. In this paper we consider the stochastic integral

yt—fo eis< b)db, of a nonanticipating Brownian functional e that is

essentially bounded with respect to both time and the Brownian

paths. Let/ be a convex function satisfying a certain mild growth

condition. Then Eflyi) rS£/([[e||¿¡), where bt is the position at time t

of the Brownian path b. As a corollary, sharp bounds are obtained

on the moments of y¡. The key point in the proof is the use of a

transformation, derived from Itô's lemma, that converts a hyper-

bolic partial differential equation into a parabolic one.

Let (t, b)-+e(t, b) be a nonanticipating Brownian functional (see

[l]) that is essentially bounded with respect to both the time t (2:0)

and the Brownian paths b, i.e.,

||e|| : = ess sup | e(t, b)\ < °°.
i.»

Let yt be the stochastic (i.e., Itô) integral of e,

yt=  f  e(s, b)dbs,        I ^ 0.
•I o

(By bs we mean the position of the path b at time s, while b denotes

the entire path.)

Let/ be a convex function on R satisfying the growth condition

(GC)        ]/(x)|   ^ K expi\ x\a),        xER,    for some a < 2.

We consider the functional e-*Ef(yt), \\e\\ gl, and prove that it at-

tains its maximum value at the constant function eal. E is the ex-

pectation, i.e. integral over the space of Brownian paths with Wiener

measure. As a corollary we obtain new and sharp bounds on the

moments of yt. The essential ingredient in the proof is the use of Itô's

lemma to convert a hyperbolic equation or inequality for a function

h(x, t) into a parabolic equation or inequality for H(x, t) : =Eh(x, yt).

This last point is discussed further in Remark 2, where references are

given to related work.
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Theorem. Letf be a convex function on R that satisfies (GC). Let e be

a nonanticipating Brownian functional with || e|| < °° and let yt (¡. è 0) be

the stochastic integral of e. Then for t^O, Ef(y,) gF/(||e||ô().

Proof. Let

h(x, t) = C-1 f /(/ + xm)(\ - m2yn~vi2dm,

C =   f   (1 -m2)^-3)'2dm.

Then h is continuous in D = {(x, /) | x^0, — °° </ < oo }, and from

/t+x               ,              /w  _  ft!|    (n-»)/2

/(ío)<1-Í-)> im,

it follows that for odd re, A£C(n~"3)/2(Z)0), while for even re,

ÄeO-2>/2(F>°). In particular if re^7, hEC2(D°). Let us assume from

now on that re is so chosen. From (l) and (2) one can verify that h is a

solution to the following boundary value problem for the Darboux

equation (see [2, p. 700]):

h„ - Gh,        (x, t) E D",
(3)

h(Q,t) =/(/),

where Gis the operator Gh: = hxx+((n — \)/x)hx.

We note the estimate

(4) /•{|„l>í)S2«p{i|¡}

which is contained in [l, p. 25]. Owing to this bound and to the fact

that the function t-*h(x, t) satisfies (GC) it is possible to define the

"transform"

(5) H(x, t) : = Eh(x, yt)

which is then a continuous function in A = {(x, ¿)|x^0, i^O}. Next

we compute the stochastic differential of h(x, yt), toward showing that

H satisfies a certain parabolic inequality. Thus

(6) dh = htdyt + \htt(dyt)2 = htedbt + \htle2dt.

We claim that, for any s > 0,

(7) E I    h\(x, yr)dr < °o,        x > 0.
J o
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To see this, we compute ht, from (2), with the result

ht(x, t) = in - 3)xrx i  fit + xm)mi\ - m2)(n-^'2dm.

From this representation (7) follows after a short calculation using

(GC),and (4), and Schwarz' inequality. But (7) implies that in (6) the

"Brownian" term htedbt has mean zero, so t^>H(x, t) is a smooth func-

tion (for x > 0) and

(8) H, = %E[e2hu].

Now it is immediate from (1) that f—>A(x, t) is convex. Since

hEC2(Do) it follows that h„è 0. This and (8) imply

ff, ai|H|*£(Ä«) = h\\e\\2E(Gh)

= i \\e\\2G(Eh) = | \\e\\2GH    for (x, t) E A*.

This is the parabolic inequality that we referred to before.

We are now finished with the first part of the proof. The second

part of the proof consists of randomizing the space coordinate of H,

just as in the first part we randomized the time coordinate of h.

We introduce the diffusion {xt, i^O} governed by the operator

||e||2G/2 and starting at the origin. Actually there are two such

diffusions, one positive and one negative. We take the positive one,

which is the w-dimensional Bessel process with a certain scaling. I.e.,

xt is the solution to the stochastic differential equation

(ra-l)||e||2 .. ..    *
dxt =-dt + ||e||á6i,    x0 = 0,    xt = 0    for / > 0,

2xt

where {b*, t^O} is a Brownian motion independent of {bt, i^O}.

(See [l, p. 18, p. 47, p. 80] for information about the Bessel process.)

We need the fact that (almost surely) this process does not touch zero

for positive times. Because of this, if e and s, s>e>0 are two fixed

numbers, we have (xt, s — t)EA° ior e<t<s. This permits the applica-

tion of Itô's lemma for the computation of the stochastic differential

of H(xt, s-t) for e<l<s:

(10)

dH(x„ s - I) = Hxdxt + \Hxxidxt)2 - H,dt

'(n- 1)H-I'2/(«- 1)\\e\2 .. .,    *\ „ .,
= Hx[--*—dt + \\e\\dbt) + hHxx\\e\\2dt - H,dt

\       2x, /
*

= Q \\e\\2GH - Ht)dt + Hx\\e\\db,
We claim that
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I     Hx(xt, S —(11) E \    Hx(xhs - t)dt < oo.

To see this, note H2(x, t) = (E hx(x, yt))2^Ehl(x, yt), so it is sufficient

to show

C 2
E I    hx(xt, y,-i)dt < oo.

From (2) we find

hx(x, t) = x-1 j     f(t + xm)(\ - m2Yn~^i2((n - 2)m2 - \)dm,

so

hx(x, t) ^ const x 2 I     f2(t + xm)dm ^ const xr2 exp[( | í |   + x) ],

i.e.

hx(xt, ys_,) ^ const xt   exp[( | y„_, |  + x,) ].

Thus

(12) Ehx(xt, y8_i) g const E    [xt ]E    [exp[2( | y,_, |  + xt)"]].

Now we use the distribution (see e.g. [3, p. 60])

(13) P{xt E dz] = (25r0-"/2exp[-z2/2/||e||2]z"-1||e||I-'iáz,        z ^ 0.

Since «>4, Ex,-4 is a continuous and bounded function of t for t¡te.

The second term in (12) is treated just as before, using also (13) now.

We now return to (10) and note that (11) implies that the mean of

the "Brownian" term üz||e||d¿>f is zero, so

(14) —EH(xhs-t) = E{i\\e\\2GH~Ht}^0    for t < t < s
dt

by (9).
Thus successively setting / = € and / = s, we find

(15) EH(xt, s - é) á EH(x„ 0).

Next note that in the case e=-||e|| the parabolic inequality (9) is re-

placed by an equality. Thus if we define

(16) Ë(x,t) = Eh(x,\\e\\bl),
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we have, corresponding to (15),

(17) EH(xt,s- e) = EH(x„0).

But, from the definitions of Ü and H,

(18) EH(xs,0) = EH(x„0),

so from (15), (17), and (18), EH(xe, s — e) ¿EH(xt, s — e). This is true

for all e satisfying 0<e<s. By the continuity of H and H, EH(0, s)

^EH(0, s). From (3), (5), and (16), this is just Ef(y.)^Efi\\e\\b.).

Q.E.D.

Corollary. For p ^ 1,

IC '      \p
j   edb\   = \\e\\pE\ bt\p.

J 0

Proof. Take/(x) = | x\ p.

Remark 1. These bounds are clearly sharp, since they are attained

in the case of a constant function e. For p = 4, the Corollary states

E(/ed&)4 = 3||e||4i2 which should be compared with the estimate of

Skorokhod [l, p. 40] in which the constant 3 is replaced by 36, and

with that of Zakai [4] in which 3 is replaced by 9; but note that the

latter estimates are actually special cases of estimates that these

authors have given for a wider class of functions.

Remark 2. We noted in the proof of the Theorem that in the case

e= constant, (9) becomes an equality rather than an inequality. It is

clear that the same result holds true for any linear operator G inde-

pendent of time. (G need not be a differential operator.) That is, if h is

a smooth solution to the equation htt = Gh and if the function t

—*ht(x, t) satisfies (GC) then the transform H(x, t)=Eh(x, 2ll2bt)

satisfies the equation Ht = GH. Moreover both h and H satisfy the

same initial condition, i.e., H(x, 0) —h(x, 0).

(The simplest application of this fact is to the operator G =d2/dx2.

In this case the Poisson integral solution to the heat equation is

derived as a consequence of the d'Alembert solution to the wave

equation. These relationships have been noted previously (see [5]-

[9]), but the present proof is different.)

Remark 3. The idea of differentiating the solution of a parabolic

inequality along its "characteristic" diffusion xs was introduced in

[10].
Remark 4. Mark Pinsky has shown the author a simple proof of

the Theorem in the special case of exponential functions (and hence

superpositions of these). Consider the exponential martingale
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r, = expíe  I edb - B2/2   I e2ds

Since Er] = í, a simple estimate proves our result for the special case

f(x) =exp(0x).
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