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A REMARK ON MAHLER'S COMPACTNESS THEOREM

DAVID MUMFORD

Abstract. We prove that if G is a semisimple Lie group without

compact factors, then for all open sets UCZG containing the uni-

potent elements of G and for all OO, the set of discrete subgroups

rCG such that

(a) rnU={e\,
(b) G/T compact and measure (G/T) S C,

is compact. As an application, for any genus g and «>0, the set of

compact Riemann surfaces of genus g all of whose closed geodesies

in the Poincaré metric have length ä e, is itself compact.

Consider the following general problem : let G be a locally compact

topological group and let

9fto = {the set of discrete subgroups T QG}.

We would like to put a good topology on 9ft a and we would like to

find fairly "big" subsets of 9fto that turn out to be compact. Mahler

studied the case G = Rn, G/T compact, i.e., T is lattice (cf. Cassels

[l, Chapter 5]). In this case, the group of automorphisms of G,

GL(w, R), acts transitively on the set of lattices, so that the subset

9ftoC9fto of lattices can be identified as a homogeneous space under

GL(w, /?);infact:

9fto^ GL(n,R)/GL(n,Z).

So there is only one natural topology on 9ft<j and Mahler's theorem

states that for all e and K :

f     _   d) a* er, y <e=>T = (n .
<T C. R /-is compact.
I (2)    volume (Rn/T) g K i

(Cassels [l, p. 137].)

Chabauty [2 ] has investigated generalizations of Mahler's theorem

to general G and subgroups T such that measure (GyT) <4- oo.1 We

topologize 9fta by taking as a basis for the open sets the following:
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1 Although in recent years this restriction has been commonly made by people

investigating automorphic functions in several variables, in the classical cases it

eliminates the Fuchsian groups rCSL(2; R) of 2nd kind, and it eliminates all

Kleinian groups rCSL(2; C). And Wo seems very interesting in these cases.
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(1) U EG open, Su = {r G Sita | T í\ U ¿¿ 0},

(2) K E G compact,     TK = {r G SU<?| T H K = 0}.

Then assuming that G is not too pathological,2 Chabauty proves:

Theorem. Let U be an open neighborhood of e, C a positive number.

Then: {TESfla\Tr\U = {e} and measure (G/T)gC} is compact.

This is very pretty. Its main drawback, however, is that the topol-

ogy on SUff is so weak that it is hard to deduce things from conver-

gence in this topology. For instance if subgroups r, converge to T,

one would like to know that suitable sets of generators of the T,- con-

verge to generators of T. Chabauty gives some arguments about this

at the end of his paper, but I believe his reasoning there is wrong.

However the results of Weil [4] and Macbeath [5] show that the

topology is "strong enough" on the subset

SUo = {r G SUG|G/r compact}.

Theorem (Macbeath [5, Theorems 4 and 5 ]). Assume that G is a

Lie group.3 Let subgroups r.ESUo converge to TGSUg- Then for i suffi-

ciently large, there exist isomorphisms of the abstract groups

<¡>ilT^>Ti

such that for all y ET, 4>Ay) EG converge to y. Moreover there is a com-

pact set KEG and an open neighborhood UEG of e such that K-T = G,

KTi = G, UC\T = {e} and Ur\Tt = {e} if i is sufficiently large.
For the application that we want, Chabauty's theorem is not the

right generalization of Mahler's theorem. Instead, what we want is

this:

Theorem 1. Let GCGL(«, R) be a semisimple Lie group without

compact factors. Let UEG be an open set containing all unipotent ele-

ments of G and let C be a positive number. Then

{r G SUo I T C\ U = {e}, measure (G/T) á Cj

m compact.

Proof. This is an immediate consequence of Chabauty's theorem

and Selberg's conjecture, proved recently by Kajdan and Margulis

s G satisfies the 2nd axiom of countability, and moreover eSG has a fundamental

system of neighborhoods Ui such that measure ([/<—Z7¿)=0. In this case, SDxo

satisfies the 2nd axiom of countability too.

3 A Lie group is always assumed to be connected.
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[3], to the effect that a discrete subgroup TEG, G as above, such

that measure (G/T) < + » but G/T not compact, must contain non-

trivial unipotent elements of G.    Q.E.D.

Instead of invoking the difficult result of Kazdan and Margulis,

we can prove a weaker but more explicit theorem by elementary

means: Let GCGL(ra, R) again be a semisimple Lie group without

compact factors. Let KEG be a maximal compact subgroup and let

X = K\G be the associated symmetric space. Let the Killing form on

G induce a metric p on X as usual. Define a function d on G by:

d(x) = inf p(z, zx).
zex

It is easy to see that d is continuous and d(x) =0 if and only if when

you decompose x = x„-xv, (x„ semisimple, xu unipotent and x,xu

= x„x,), then x, is in a compact subgroup of G or equivalently

x,E\J¡,eo yK~y~l. For all e>0, define an open subset of G by:

U. = {xEG\d(x) < e}.

For all C>0, define a compact subset of G by:

Kc= {*GG| p(K-x, K-e) ^ C}.

Theorem 2. Let « = dim K\G. Then there is a constant y depending

only on n such that for all TESSÍg, e>0,

rrwe = {e} =*kcy = g

where C = Y-measure (G/T)/tn~1. Hence for all positive D

{r G9fto| rV\ Ut = {e}, measure (G/T) g D]

is compact.

Proof. We begin by proving:

Lemma. Let X be a compact Riemannian manifold with all sectional

curvatures R(S) ^0. There is a constant y depending only on n = dim X

such that :

diam(Z) • {length of smallest closed geodesic on X)"-1 S 7-volume (X).

Proof. Let d = diam(A") and let x, y EX be a distance d apart. Let

<r be a geodesic from x to y of length d. Let 77 be the length of the

shortest closed geodesic on X and construct a tube T around a of

radius tí/4 as the union of all geodesies perpendicular to a oí length

77/4. There are 2 possibilities: either no 2 geodesies 5i, 52 perpendicular

to <r of length ti/4 meet, or else some pair §1, Ô2 do meet. In the first
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case, we may say that the exponential map from the normal bundle

N to a in M maps an ?//4-tube To around the 0-section in N injec-

tively to M. Then since all the sectional curvatures are = 0, it follows

that:

(#) volume X ^ volume T ^ volume F0 = cv(t7/4)"_1-íZ

where c„ is the volume of the unit ball in Rn~1. On the other hand,

suppose 2 geodesies Si and 52 meet:

Let Zi, z2 and w be the points indicated in the figure and let e be the

distance from Zi to z2 along a. Then we can go from x to y by going

from x to Zi on <s, following hi, then 52 and going from z2 to y on a.

This has length =¿ —e+jj/2, and since <s is the shortest path from x

to y, d^d — e-\-r¡/2, i.e., e^rj/2. But then Si, 52 and the part of a be-

tween Zi and z2 is a closed path r of length at most r¡. r is certainly not

homotopic to 0 since on the universal covering space X of X, the

exponential from N0 to X is injective. Moreover, r has corners and

so is not itself a geodesic. Therefore there is a closed geodesic freely

homotopic to t of length <rj. This contradicts the definition of rj and

so the 1st possibility must be correct. This proves (*) and the lemma.

Q.E.D.
We apply the lemma to the manifold X/T, with the metric induced

from the metric d on X. (Note that by hypothesis TC\U,= {e}, T

acts freely on X, so X/T is a manifold.) The closed geodesies of X/T

are all images of geodesies in X joining 2 points x, x', where xEX,
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zET. Since TC\Ue= {e}, these all have length at least e. It follows

from the lemma that:

7 volume (Ayr)      y measure (G/T)
diam(X) =-=-= C.

en—1 en—1

Therefore the projection of X onto X/T maps the unit ball of radius

C onto X/T, hence Kc ■ T = G.

Finally to prove from this that {TESUg| TC\Ut= {e} and measure

(G/T)^D} is compact, it suffices by Chabauty's theorem to check

that if T,- are in this set and r<—»rGSUc, then G/T is also compact.

But since Kc-Ti = G for all i, it follows easily that KC-T = G too,

hence G/T is a quotient of Kc and is compact.    Q.E.D.

I want to apply Theorem 2 to the case G = SL (2, R)/( + I) so that T

is a Fuchsian group. Then X is the Lobachevskian plane, and a

simple calculation shows that

Ut = image of A's such that | tr A | < 2 cosh(e/2)

= set of elliptic and parabolic elements and those hyperbolic

elements with eigenvalues /, /_1 for which 1 <t<e'12.

The Fuchsian groups of 1st kind which are disjoint from some Ut are

exactly those which act freely on X and for which X/T is compact.

In this case X/T is a compact Riemann surface with its Poincaré

metric, X is its universal covering space and T=wi(X/T). Moreover

the map which takes an element zET to the image mod T of the

shortest line segment geodesic from x to x* in X defines an isomor-

phism between the set of conjugacy classes in T and the set of closed

geodesies in X/T. If the conjugacy class of y corresponds to a geo-

desic a, then

length a        Tr 7
cosh- =   - .

2 2

Moreover, by the Gauss-Bonnet theorem

measure (G/T) = area (X/T) = enst (g — 1)

where g = genus of X/T. So in this case, the lemma in Theorem 2

says:

Corollary 1. For all compact Riemann surfaces X of genus g,

diam(X) • (length of smallest geodesic on X) is bounded above.

Corollary 2. For all e>0, g 3:2, the set of discrete subgroups

TESh(2;R) suchthat:
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(i) forallyET, y*I, |Tr7|^2 + e,
(ii) X/T is a compact Riemann surface of genus g,

is compact.

Corollary 3. Let g Sï 2 and let SSt0 be the moduli space of compact

Riemann surfaces of genus g (without "marking"). For all e>0, the

subset:

{X E SSt01 in the Poincarê metric, all geodesies on X have length â «}

is compact.

(Proof. Apply Theorem 1 and Corollary 1.)

This result was my motivation for looking at these questions. I

originally found a completely elementary proof of this, using the

method of Theorem 2, and then finding

(a) upper bounds for the number of vertices and

(b) lower bounds for the interior and exterior angles of the Dirichlet

fundamental domain for T acting on X; but one reference leads to

another and it turned out that {elem. th.} CChabauty+Weil

+Kazdan-Margulis-f-Macbeath.
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