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ON SPECIAL GENERATORS FOR PROPERLY
INFINITE VON NEUMANN ALGEBRAS1

W. R. WOGEN

Abstract. It is known that every properly infinite von Neu-

mann algebra flona separable Hubert space has a single generator.

We show in this paper that a generator for ft may be chosen from

some special classes of operators. In particular each of the follow-

ing classes of operators contains a generator for ft: the hyponor-

mals, the nilpotents, the transcendental quasinilpotents, and the

unimodular contractions. We also show that a generator for ft may

be chosen with arbitrarily prescribed spectrum.

Introduction. Let 50. be a separable complex Hubert space. A

von Neumann algebra ft is properly infinite if ft contains no finite

projections in its center. If S is an algebra of operators, S' denotes the

commutant of S. For 2^re^N0, Mn(S) denotes the algebra of

«Xw matrices over S which act boundedly on 22"»i03C. Let

(R(A, B, • • • ) denote the von Neumann algebra generated by the set

{^4, 23, •••} of operators. The reader is referred to [2] and [ó] as

references on von Neumann algebras.

Throughout this paper we will need the well-known fact that if ft

is a properly infinite von Neumann algebra, then ft is *-isomorphic

to Mn(a) for 1 gre^No (cf. [6, Corollary 14]). Also, it is known that

a *-isomorphism of a von Neumann algebra ft onto a von Neumann

algebra 03 carries a generator of ft onto a generator of (B (cf. [6,

p. 68]).
It was shown in [7] that if ft is a properly infinite von Neumann

algebra, then ft has a single generator. It then follows from [3,

Lemma 1 ] that ft has a partially isometric generator. In this note we

will construct some other generators for ft.

The author wishes to thank Professor D. Topping and Professor J.

Stampfli for many helpful conversations concerning the material

presented here.

Results. We begin with a lemma.
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Lemma 1. Let 3=«^X0, and let {a*}".! and {A*}?.! be bounded

sequences of complex numbers with ak9^0 V&. Let ft be a von Neumann

algebra with ft= 01(^4), where A satisfies || (Xi—Xa)-4|| < | aia2| - Define

B = (Bi,j)lJ^lEMn(a) by Bi,i=\a, Bi+Ui = ail, Bttl = A, andBu = 0
otherwise. Then (R(B) = Mn(d).

Proof. We will show that (K(B)'={(hiijD)l1.i:DEa'\. It then
follows easily that 01(5) = (ñ(B)" = Mn(a). Let C=(C,-,y)^_1G(R(J3)'
with C self ad joint (i.e., C,-,y=C*y,¿). Then BC=(Ei,i)lJ_i, where

E\,¡ = XiCi.y,        E3j = ACij + a2C2,¡ + AjCa.y,

and for i?*l, 3,

Ei,j = öj_iC,_i,y + X,C,-,y.

CB = iFi,i)Zjml, where

F*,i = AiCt-,i + aiC,-,2 + Ci,iA,

and V7VI,

F<,y = XyC,-,y + flyCi,y+i.

By assumption, BC=CB. Since £1,1 = ^1,1 and Ei,2 = F\,2, we

have öiCi,2+Ci,3^4 =0 and a2Ci,3 = (Xi— X2)Ci,2. It follows that

Ci,i(axatl + (Xi — X2)^4) = 0. But ||(Xi — X2).4|| < |aia2| so oia27

+ (Xi—X2)j4 is invertible, and Ci,3 = 0. Thus also Ci,2 = 0. Now

Ei,z = Fi,i implies Ci,4 = 0. Proceeding in this way we get Ci,t = 0 for

& = 2. Now if we compare £2,y and F2,¡, we see by similar arguments

that C2,fc = 0 for k^3. Continuing in this way we get C,-,y = 0 Vi<j.

Ci,j = C*t, so d,i = 0 Vt féj.
Since Ei+i,i= Fi+iti, we have G,i = C<,< for i^i. Finally, since

£3,1=^3,1, we have ACi,i = d,sA = Ci,iA. Ci,i is selfadjoint, so

Ci,iGöl(^)' = a'. It follows that (R(B)'={(ôi,iD)lJ,i:DEa'\ as
asserted.

Definition 1. An operator A is hyponormal if A*A —AA*^0.

Note that hyponormality is invariant under ""-isomorphism.

Theorem 1. // ft is a properly infinite von Neumann algebra on a

separable Hilbert space, then ft has a hyponormal generator.

Proof. Choose ;4£ft such that (R(A) = a and ||4||^l/2. Let

i = (Biii),",1GM„(a) be defined by 5M = J, Bt,2 = 2I, 5,+M = 37 for

i^3, B3,i = A, and 5,-,y = 0 otherwise. Then by Lemma 1, (R(B)

= MX(Q). We assert that B is hyponormal. In fact, to show

B*B — BB* = 0, it suffices to show that the 3 by 3 matrix
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~I+A*A        2A* 0

2A 31 -A*

0 -A        51-A A*.

is positive. This is a routine computation. Since ft is *-isomorphic to

Mx(&), it follows that ft has a hyponormal generator.

This theorem shows in particular that there exist hyponormal

operators A such that 6{(A) is not type I.

We mention that H. Behncke has recently shown [l ] that Theorem

1 is true with "hyponormal" replaced by "subnormal".

Remark 1. If A is hyponormal and (R(A) is finite, then A is normal

and <ñ(A) is abelian. (This holds because if (R(A) is finite, then there is

a unique center valued trace function t on <R(A) (cf. [2, Chapter III,

§4]) satisfying, in particular, (1) t(CB-BC)=0 VB, CE<r\(A), and

(2) if P^0 and t(F)=0, thenP = 0. Hence ii A*A-AA*^0, then
(A*A—AA*)=0, so A*A—AA* = 0, and A is normal.) It follows

that if A is hyponormal, then <R(A) is of the form ft©G3, where ft is

abelian and 03 is properly infinite.

Definition 2. An operators! is quasinilpotent if limn^M ||^4"||1/n = 0.

A is nilpotent of index « if An = 0 and An~1^0. A is transcendental

quasinilpotent if A is quasinilpotent but not nilpotent.

Remark 2. Topping has shown [5, Theorem 3] that a properly

infinite von Neumann algebra is linearly spanned by its transcen-

dental quasinilpotents.

Theorem 2. Let ft be a properly infinite von Neumann algebra on a

separable Hilbert space. Then ft has a transcendental quasinilpotent

generator.

Proof. Let {a„ },n,i be a sequence of nonzero complex numbers with

limB^M a„ = 0. Let^4 be a generator of ft. Define Q= (Qi,3)?,3=xEM„(ft)

by Qi+x,i = ail, Q«,y = 0 otherwise. Then Q is a weighted shift, and it is

easy to show that Q is quasinilpotent. Let N = (Ni,3)"J=1E\M„(Q.) be

defined by Nz,x = A, Ni¡3 = Q otherwise. Let B = Q+N. Then (R(B)

= M„(&) by Lemma 1. We claim that B is a transcendental quasi-

nilpotent. In fact, a computation shows that Bn = (Q+N)n = Qn

+ Q"~1N. Thus ||23"||1/n = ||(2"+Çn-:2V||1/''g||<2"-1||1/'i||<2+^'||1/n->0 as

re—> » . Now note that transcendental quasinilpotence is a "'-isomor-

phism invariant and that ft is *-isomorphic to 2lfM(ft). It follows that

ft has a transcendental quasinilpotent generator.

Theorem 3. If re ̂  3 and & is a separably acting properly infinite

von Neumann algebra, then ft has a nilpotent generator of index re.
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Proof. If a=6\(A), let B = (Bi,3)^lEMn(a) be defined by

23,+i,i = 7, F3,i = ̂ 4, and 23,-,y = 0 otherwise. Then 01(23) =Mn(ft) by
Lemma 1, and B is nilpotent of index re. ft is *-isomorphic to Mn(Q),

so the theorem follows. (For re = 3, this theorem is due to Pearcy and

Ringrose (unpublished).)

Let ff(A) denote the spectrum of A. The next theorem asserts that

a properly infinite von Neumann algebra has generators with arbi-

trarily prescribed spectrum. More precisely,

Theorem 4. Let ft be a properly infinite von Neumann algebra on a

separable Hilbert space 3C and let K be a nonempty compact subset of

the complex plane. Then there is an operator B in ft such that 31(23) = ft

andff(B)=K.

Proof. Let {a*}î°-i be a sequence of complex numbers such that

ak5¿0 V& and lim*.,,,, ak = 0. Let S be a countable dense subset of K.

Form a sequence {XijtLi from S such that each element of S occurs

countably many times in the sequence. Choose A Gû with (R(A) = ft

and ||(Xi— \t)A\\ < \aiat\.
Let2V=(5uX4J)J.16Af.(a). Let <2 = (<3.X-iGM0O(ft) be defined

by Qi+x,i = ail, Q3,x=A, and (?,-,/= 0 otherwise. Write 23 = Q+N. Then

23 is an operator on 22*°°.i ©3C*> where 3C* = 3C V¿. By Lemma 1,

(R(B) = Ma>(a). We will show that <r(23) =K.

Notice that ~\Eo-(B)^0Eff(B—\), and that the matrix F-X

has the same form as B. Hence it suffices to show that 0G<r(23)

^og2í:={x4}-.
Suppose first that OG {X*}-. Then there is a subsequence {X*,. }¿1,

such that limy.»«, \kj = 0. Choose xkjE3Ckj with JUiJI =1, and identify
xkj with the vector (0, 0, • • • 0, xkj, 0, • • • ) G £"-i © 3C* whose only

nonzero entry is in the ¿yth position. Then HFx^H ^HX^-x^H +||a*J%||

= |X*,-1 +1a*,| for k3>l. But lxm3^.m akj = \im3-*vl'\kj = 0, so that

||23%||—»0 as j—»». Thus OG<r(23). (This argument actually shows

that 0 is in the approximate point spectrum of 23.)

Now suppose that 0G{X*}~. Then N is invertible. In fact, N'1

= (8i,3K1I)Z-i- Computing N^Q, we find that N-1Q=(Ci,3)Z=x,
where Ci+i,i = X¡+xaiI, C3,x=\ï1A, and C,-,y=0 otherwise. Then 2V_1(?

is quasinilpotent by the proof of Theorem 2, since lim^« Xf/+iO* = 0.

Thus I+N-iQ is invertible. But then B = N+Q = N(I+N~1Q) is the

product of invertible operators, so B is invertible, i.e., 0(£.ff(B). The

theorem now follows since ft is *-isomorphic to ilf^ft).

Definition 3. An operator A is a unimodular contraction if ||^4|| ^ 1

and(rG4)C{z:|z| «if.
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Note that the image under a ""-isomorphism of a unimodular con-

traction is a unimodular contraction. In [4], Russo poses the ques-

tion: "Do there exist unimodular contractions of type IIM and III?"

The following theorem answers this question in the affirmative.

Theorem 5. If d is a properly infinite von Neumann algebra on a

separable Hubert space 3C, then ft has a unimodular contractive gen-

erator.

We first prove a lemma.

Lemma 2. Let {ak}k=i be an increasing sequence of positive numbers

such that limk^.xak = l. Let the operator r=(èjiy)"i__„ on l2(Z) be de-

fined by bi,i-i = 1 for i i£ 0, ¿>i,,-_i = ai for i>0, and bt,¡ = 0 otherwise. Then
B is a unimodular contraction.

Proof. T is a two-sided weighted shift. Obviously T is a contrac-

tion. But an easy computation shows that ||r~n|| =l/aia2 ■ ■ ■ a„.

Then n       ii
lim || r-"!!1'" = lim (l/aias • • • a,)1'» = 1,

n-+« n—»w

since lim,,-»,», an = 1. Thus the spectral radius of T~l is 1, and it follows

that(r(r)C{z:|z| =l}.
Proof of Theorem 5. By Theorem 3, we can choose 4£ft with

St(A) = Q, and A nilpotent. Moreover, we may suppose ||4||?£l/2.

Let a„ = n/(n + l) for « = 1, 2, • • • . Define Q= (0i,y)i"--«GMoo(ft)

by 0.2,0 = A and Q¿,y = 0 otherwise. Define r=(r,-,y)"y__»£A/"oo(ft) by

r,-,i_i = 7 for i^O, ri,,_i = a<7 for i>0, and 7\,y = 0 otherwise. Let

B = T-\- Q. We claim that B is a unimodular contractive generator

for Mx(0).

We show first that B is a contraction. Recall that ||^41¡ ̂  1/2,

ai=l/2, and a2 = 2/3. Let x= W;=-GL."=-.© ¡K. Then

INI2 = E IWI2 + lk*o||2 + \\Axo + a2xi\\2 + E |k+i*„||2
—oo 2

= E NI2 + lh*»||2 + 2(114*011* + IM2) + E N|2
-oo 2

= Elkn||2+((l/2)2+2(l/2)^)||xo||2+2(2/3)*||x1||*+ ¿||xB||*
-M 2

Thus B is a contraction.
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Next we show that a(B)E [z: \z\ =1}. It suffices to show that if

|X| <1, then \(£o(B). Let |X| <1. By Lemma 2, T is a unimodular

contraction. Thus T—\I is invertible. B = T-\-Q, so B—\I=(T—\I)

+Q = (T-\I)[I+(T-\I)-1Q]. Now simple matrix multiplication

shows that (T—\I)-lQ is nilpotent. (In fact if An = 0 and CEMa(CI),

then (C0n = O.) Hence I + (T-\I)~lQ is invertible. Since 5-XI is a

product of invertible operators, B —XI is invertible and X(£o-(.B).

Finally we sketch a proof that (R(B) =M„(Q,). As in Lemma 1, it

suffices to show that (R(B)'= {(S.-.yZ»)^--«. :DEQ>'}- Let C

= (Cij)"j--«E&(By with C selfadjoint. Then BC=(EiJ)"^_lc,

where

£2,; = ACoj + a2C\,j,

£»,y = C,_i,y for i ^ 0,

and
Eíj = a¿C<_i,y       for i > 0, i 7a 2.

CB ■» (Fij)^. _ «, where

í'i.O = ûiC,-,! -H Ci,2-4,

F#.i = C,-,y+1       for/<0,

and

Fij = ay+iC<,yfi       for/ > 0.

We are assuming that BC=CB and that C,-,y= CJít.

Let m = 3. Since £0,n-i = £o,n-i and £n,-i = £n,-i, we find that

anC0,n = C_i,B-i and a„C_i>B_i = C0in. But a„ j£\, so Co,r. = C-i,n-i = 0.

Fix « = 3. Comparing £*,*+„_! and £i,*+B-i, we find that Ci,4+„ = 0

V£. But £¡,3= £2,3 and £4,1 = £4,1, so that a2Ci,3 = a4C2,4 and ö2C*4

= 04^,3. Since £7-25^04, we must have Ci,s = C2,4 = 0. It follows that

C*,*+2 = 0 V&. Similarly, since £2,2 = £2,2 and £3,1 = £3,1, we get

a2Ci,2 = aiC2,z and a3Cij2=ii2C2,3. Hence Ci,2=C2,3 = 0 and thus

C*,*+i = 0 Vk. We have shown that C*,„+f; = 0 Vn—i and V¿. But

Ci.i = C*i, so d,i = 0 Vi 9*j.
Because £i+i,*=£¡fc+i,*> we find that C*,*=Co,o V&. Finally, since

£2,o = £2,o, we have ACq,o=C2,2A=Co,oA, i.e., Co.oGft'. Therefore

fR(5)'={(5,-,yß)y__.:UGft'}- Since « is *-isomorphic to M „(a),

the proof is complete.

Remark 3. Russo has shown (cf. [4, Theorem l]) that if A is a

unimodular contraction and (R(A) is finite, then A is unitary. It

follows if A is any unimodular contraction, then (R(A) is of the form

ft© (B, where ft is abelian and (B is properly infinite.
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