ON SPECIAL GENERATORS FOR PROPERLY INFINITE VON NEUMANN ALGEBRAS¹

W. R. WOGEN

ABSTRACT. It is known that every properly infinite von Neumann algebra $\mathfrak A$ on a separable Hilbert space has a single generator. We show in this paper that a generator for $\mathfrak A$ may be chosen from some special classes of operators. In particular each of the following classes of operators contains a generator for $\mathfrak A$: the hyponormals, the nilpotents, the transcendental quasinilpotents, and the unimodular contractions. We also show that a generator for $\mathfrak A$ may be chosen with arbitrarily prescribed spectrum.

Introduction. Let \mathfrak{R} be a separable complex Hilbert space. A von Neumann algebra \mathfrak{R} is *properly infinite* if \mathfrak{R} contains no finite projections in its center. If S is an algebra of operators, S' denotes the commutant of S. For $2 \leq n \leq \aleph_0$, $M_n(S)$ denotes the algebra of $n \times n$ matrices over S which act boundedly on $\sum_{k=1}^n \oplus \mathfrak{R}$. Let $\mathfrak{R}(A, B, \cdots)$ denote the von Neumann algebra generated by the set $\{A, B, \cdots\}$ of operators. The reader is referred to [2] and [6] as references on von Neumann algebras.

Throughout this paper we will need the well-known fact that if α is a properly infinite von Neumann algebra, then α is *-isomorphic to $M_n(\alpha)$ for $1 \le n \le \aleph_0$ (cf. [6, Corollary 14]). Also, it is known that a *-isomorphism of a von Neumann algebra α onto a von Neumann algebra α carries a generator of α onto a generator of α (cf. [6, p. 68]).

It was shown in [7] that if α is a properly infinite von Neumann algebra, then α has a single generator. It then follows from [3, Lemma 1] that α has a partially isometric generator. In this note we will construct some other generators for α .

The author wishes to thank Professor D. Topping and Professor J. Stampfli for many helpful conversations concerning the material presented here.

Results. We begin with a lemma.

Received by the editors May 26, 1970.

AMS 1969 subject classifications. Primary 4665, 4710.

Key words and phrases. Generator, properly infinite von Neumann algebra, hyponormal, transcendental quasinilpotent, unimodular contraction.

¹ This paper is part of the author's doctoral dissertation written under the direction of Professor D. Topping.

LEMMA 1. Let $3 \le n \le \aleph_0$, and let $\{a_k\}_{k=1}^n$ and $\{\lambda_k\}_{k=1}^n$ be bounded sequences of complex numbers with $a_k \ne 0 \ \forall k$. Let α be a von Neumann algebra with $\alpha = \Re(A)$, where A satisfies $\|(\lambda_1 - \lambda_2)A\| < |a_1a_2|$. Define $B = (B_{i,j})_{i,j=1}^n \in M_n(\alpha)$ by $B_{i,i} = \lambda_i I$, $B_{i+1,i} = a_i I$, $B_{i,1} = A$, and $B_{i,j} = 0$ otherwise. Then $\Re(B) = M_n(\alpha)$.

PROOF. We will show that $\Re(B)' = \{(\delta_{i,j}D)_{i,j=1}^n : D \in \alpha'\}$. It then follows easily that $\Re(B) = \Re(B)'' = M_n(\alpha)$. Let $C = (C_{i,j})_{i,j=1}^n \in \Re(B)''$ with C selfadjoint (i.e., $C_{i,j} = C^*_{j,i}$). Then $BC = (E_{i,j})_{i,j=1}^n$, where

$$E_{1,j} = \lambda_1 C_{1,j}, \qquad E_{3,j} = A C_{1,j} + a_2 C_{2,j} + \lambda_3 C_{3,j},$$

and for $i \neq 1, 3$,

$$E_{i,j} = a_{i-1}C_{i-1,j} + \lambda_i C_{i,j}.$$

 $CB = (F_{i,j})_{i,j=1}^n$, where

$$F_{i,1} = \lambda_1 C_{i,1} + a_1 C_{i,2} + C_{i,3} A,$$

and $\forall j \neq 1$,

$$F_{i,j} = \lambda_j C_{i,j} + a_j C_{i,j+1}.$$

By assumption, BC = CB. Since $E_{1,1} = F_{1,1}$ and $E_{1,2} = F_{1,2}$, we have $a_1C_{1,2} + C_{1,3}A = 0$ and $a_2C_{1,3} = (\lambda_1 - \lambda_2)C_{1,2}$. It follows that $C_{1,3}(a_1a_2I + (\lambda_1 - \lambda_2)A) = 0$. But $\|(\lambda_1 - \lambda_2)A\| < |a_1a_2|$ so $a_1a_2I + (\lambda_1 - \lambda_2)A$ is invertible, and $C_{1,3} = 0$. Thus also $C_{1,2} = 0$. Now $E_{1,3} = F_{1,3}$ implies $C_{1,4} = 0$. Proceeding in this way we get $C_{1,k} = 0$ for $k \ge 2$. Now if we compare $E_{2,j}$ and $F_{2,j}$, we see by similar arguments that $C_{2,k} = 0$ for $k \ge 3$. Continuing in this way we get $C_{i,j} = 0$ $\forall i < j$. $C_{i,j} = C_{j,i}^*$, so $C_{i,j} = 0$ $\forall i \ne j$.

Since $E_{i+1,i} = F_{i+1,i}$, we have $C_{1,1} = C_{i,i}$ for $i \ge 1$. Finally, since $E_{3,1} = F_{3,1}$, we have $AC_{1,1} = C_{3,3}A = C_{1,1}A$. $C_{1,1}$ is selfadjoint, so $C_{1,1} \in \mathfrak{A}(A)' = \mathfrak{A}'$. It follows that $\mathfrak{A}(B)' = \{(\delta_{i,j}D)_{i,j-1}^n : D \in \mathfrak{A}'\}$ as asserted.

DEFINITION 1. An operator A is hyponormal if $A*A - AA* \ge 0$. Note that hyponormality is invariant under *-isomorphism.

THEOREM 1. If a is a properly infinite von Neumann algebra on a separable Hilbert space, then a has a hyponormal generator.

PROOF. Choose $A \in \alpha$ such that $\Re(A) = \alpha$ and $||A|| \le 1/2$. Let $B = (B_{i,j})_{i,j=1}^{\infty} \in M_{\infty}(\alpha)$ be defined by $B_{2,1} = I$, $B_{3,2} = 2I$, $B_{i+1,i} = 3I$ for $i \ge 3$, $B_{3,1} = A$, and $B_{i,j} = 0$ otherwise. Then by Lemma 1, $\Re(B) = M_{\infty}(\alpha)$. We assert that B is hyponormal. In fact, to show $B*B - BB* \ge 0$, it suffices to show that the 3 by 3 matrix

$$\begin{bmatrix} I + A*A & 2A* & 0 \\ 2A & 3I & -A* \\ 0 & -A & 5I - AA* \end{bmatrix}$$

is positive. This is a routine computation. Since α is *-isomorphic to $M_{\infty}(\alpha)$, it follows that α has a hyponormal generator.

This theorem shows in particular that there exist hyponormal operators A such that $\Re(A)$ is not type I.

We mention that H. Behncke has recently shown [1] that Theorem 1 is true with "hyponormal" replaced by "subnormal".

REMARK 1. If A is hyponormal and $\mathfrak{R}(A)$ is finite, then A is normal and $\mathfrak{R}(A)$ is abelian. (This holds because if $\mathfrak{R}(A)$ is finite, then there is a unique center valued trace function τ on $\mathfrak{R}(A)$ (cf. [2, Chapter III, §4]) satisfying, in particular, (1) $\tau(CB-BC)=0$ $\forall B, C \in \mathfrak{R}(A)$, and (2) if $P \geq 0$ and $\tau(P)=0$, then P=0. Hence if $A*A-AA*\geq 0$, then (A*A-AA*)=0, so A*A-AA*=0, and A is normal.) It follows that if A is hyponormal, then $\mathfrak{R}(A)$ is of the form $\mathfrak{A} \oplus \mathfrak{A}$, where \mathfrak{A} is abelian and \mathfrak{A} is properly infinite.

DEFINITION 2. An operator A is quasinilpotent if $\lim_{n\to\infty} ||A^n||^{1/n} = 0$. A is nilpotent of index n if $A^n = 0$ and $A^{n-1} \neq 0$. A is transcendental quasinilpotent if A is quasinilpotent but not nilpotent.

REMARK 2. Topping has shown [5, Theorem 3] that a properly infinite von Neumann algebra is linearly spanned by its transcendental quasinilpotents.

THEOREM 2. Let Q be a properly infinite von Neumann algebra on a separable Hilbert space. Then Q has a transcendental quasinilpotent generator.

PROOF. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of nonzero complex numbers with $\lim_{n\to\infty}a_n=0$. Let A be a generator of $\mathfrak A$. Define $Q=(Q_{i,j})_{i,j=1}^{\infty}\in M_{\infty}(\mathfrak A)$ by $Q_{i+1,i}=a_iI$, $Q_{i,j}=0$ otherwise. Then Q is a weighted shift, and it is easy to show that Q is quasinilpotent. Let $N=(N_{i,j})_{i,j=1}^{\infty}\in M_{\infty}(\mathfrak A)$ be defined by $N_{3,1}=A$, $N_{i,j}=0$ otherwise. Let B=Q+N. Then $\mathfrak A(B)=M_{\infty}(\mathfrak A)$ by Lemma 1. We claim that B is a transcendental quasinilpotent. In fact, a computation shows that $B^n=(Q+N)^n=Q^n+Q^{n-1}N$. Thus $\|B^n\|^{1/n}=\|Q^n+Q^{n-1}N\|^{1/n}\leq \|Q^{n-1}\|^{1/n}\|Q+N\|^{1/n}\to 0$ as $n\to\infty$. Now note that transcendental quasinilpotence is a *-isomorphism invariant and that $\mathfrak A$ is *-isomorphic to $M_{\infty}(\mathfrak A)$. It follows that $\mathfrak A$ has a transcendental quasinilpotent generator.

THEOREM 3. If $n \ge 3$ and α is a separably acting properly infinite von Neumann algebra, then α has a nilpotent generator of index n.

PROOF. If $\alpha = \Re(A)$, let $B = (B_{i,j})_{i,j=1}^n \in M_n(\alpha)$ be defined by $B_{i+1,i} = I$, $B_{3,1} = A$, and $B_{i,j} = 0$ otherwise. Then $\Re(B) = M_n(\alpha)$ by Lemma 1, and B is nilpotent of index n. α is *-isomorphic to $M_n(\alpha)$, so the theorem follows. (For n=3, this theorem is due to Pearcy and Ringrose (unpublished).)

Let $\sigma(A)$ denote the spectrum of A. The next theorem asserts that a properly infinite von Neumann algebra has generators with arbitrarily prescribed spectrum. More precisely,

THEOREM 4. Let α be a properly infinite von Neumann algebra on a separable Hilbert space \Re and let K be a nonempty compact subset of the complex plane. Then there is an operator B in α such that $\Re(B) = \alpha$ and $\sigma(B) = K$.

PROOF. Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of complex numbers such that $a_k \neq 0 \ \forall k$ and $\lim_{k \to \infty} a_k = 0$. Let \$ be a countable dense subset of K. Form a sequence $\{\lambda_k\}_{k=1}^{\infty}$ from \$ such that each element of \$ occurs countably many times in the sequence. Choose $A \in \mathfrak{A}$ with $\mathfrak{R}(A) = \mathfrak{A}$ and $\|(\lambda_1 - \lambda_2)A\| < |a_1a_2|$.

Let $N = (\delta_{i,j}\lambda_i I)_{i,j=1}^{\infty} \in M_{\infty}(\alpha)$. Let $Q = (Q_{i,j})_{i,j=1}^{\infty} \in M_{\infty}(\alpha)$ be defined by $Q_{i+1,i} = a_i I$, $Q_{3,1} = A$, and $Q_{i,j} = 0$ otherwise. Write B = Q + N. Then B is an operator on $\sum_{k=1}^{\infty} \oplus \mathfrak{R}_k$, where $\mathfrak{R}_k = \mathfrak{R} \ \forall k$. By Lemma 1, $\mathfrak{R}(B) = M_{\infty}(\alpha)$. We will show that $\sigma(B) = K$.

Notice that $\lambda \in \sigma(B) \Leftrightarrow 0 \in \sigma(B-\lambda)$, and that the matrix $B-\lambda$ has the same form as B. Hence it suffices to show that $0 \in \sigma(B)$ $\Leftrightarrow 0 \in K = {\lambda_k}^-$.

Suppose first that $0 \in \{\lambda_k\}^-$. Then there is a subsequence $\{\lambda_{k_j}\}_{j=1}^{\infty}$ such that $\lim_{j\to\infty} \lambda_{k_j} = 0$. Choose $x_{k_j} \in \mathcal{K}_{k_j}$ with $||x_{k_j}|| = 1$, and identify x_{k_j} with the vector $(0, 0, \dots, 0, x_{k_j}, 0, \dots) \in \sum_{k=1}^{\infty} \oplus \mathcal{K}_k$ whose only nonzero entry is in the k_j th position. Then $||Bx_{k_j}|| \le ||\lambda_{k_j}x_{k_j}|| + ||a_{k_j}x_{k_j}|| = |\lambda_{k_j}| + |a_{k_j}|$ for $k_j > 1$. But $\lim_{j\to\infty} a_{k_j} = \lim_{j\to\infty} \lambda_{k_j} = 0$, so that $||Bx_{k_j}|| \to 0$ as $j \to \infty$. Thus $0 \in \sigma(B)$. (This argument actually shows that 0 is in the approximate point spectrum of B.)

Now suppose that $0 \in \{\lambda_k\}^-$. Then N is invertible. In fact, $N^{-1} = (\delta_{i,j}\lambda_i^{-1}I)_{i,j=1}^{\infty}$. Computing $N^{-1}Q$, we find that $N^{-1}Q = (C_{i,j})_{i,j=1}^{\infty}$, where $C_{i+1,i} = \lambda_{i+1}^{-1}a_iI$, $C_{3,1} = \lambda_3^{-1}A$, and $C_{i,j} = 0$ otherwise. Then $N^{-1}Q$ is quasinilpotent by the proof of Theorem 2, since $\lim_{k \to \infty} \lambda_{k+1}^{-1}a_k = 0$. Thus $I + N^{-1}Q$ is invertible. But then $B = N + Q = N(I + N^{-1}Q)$ is the product of invertible operators, so B is invertible, i.e., $0 \in \sigma(B)$. The theorem now follows since $\mathfrak A$ is *-isomorphic to $M_{\infty}(\mathfrak A)$.

DEFINITION 3. An operator A is a unimodular contraction if $||A|| \le 1$ and $\sigma(A) \subset \{z : |z| = 1\}$.

Note that the image under a *-isomorphism of a unimodular contraction is a unimodular contraction. In [4], Russo poses the question: "Do there exist unimodular contractions of type II_{∞} and III?" The following theorem answers this question in the affirmative.

THEOREM 5. If A is a properly infinite von Neumann algebra on a separable Hilbert space 3C, then A has a unimodular contractive generator.

We first prove a lemma.

LEMMA 2. Let $\{a_k\}_{k=1}^{\infty}$ be an increasing sequence of positive numbers such that $\lim_{k\to\infty} a_k = 1$. Let the operator $T = (b_{i,j})_{i,j=-\infty}^{\infty}$ on $l^2(\mathbf{Z})$ be defined by $b_{i,i-1} = 1$ for $i \leq 0$, $b_{i,i-1} = a_i$ for i > 0, and $b_{i,j} = 0$ otherwise. Then B is a unimodular contraction.

PROOF. T is a two-sided weighted shift. Obviously T is a contraction. But an easy computation shows that $||T^{-n}|| = 1/a_1a_2 \cdots a_n$. Then

$$\lim_{n\to\infty} ||T^{-n}||^{1/n} = \lim_{n\to\infty} (1/a_1a_2 \cdot \cdot \cdot a_n)^{1/n} = 1,$$

since $\lim_{n\to\infty} a_n = 1$. Thus the spectral radius of T^{-1} is 1, and it follows that $\sigma(T) \subset \{z : |z| = 1\}$.

PROOF OF THEOREM 5. By Theorem 3, we can choose $A \in \mathfrak{A}$ with $\mathfrak{R}(A) = \mathfrak{A}$ and A nilpotent. Moreover, we may suppose $||A|| \leq 1/2$. Let $a_n = n/(n+1)$ for $n = 1, 2, \cdots$. Define $Q = (Q_{i,j})_{i,j=-\infty}^{\infty} \in M_{\infty}(\mathfrak{A})$ by $Q_{2,0} = A$ and $Q_{i,j} = 0$ otherwise. Define $T = (T_{i,j})_{i,j=-\infty}^{\infty} \in M_{\infty}(\mathfrak{A})$ by $T_{i,i-1} = I$ for $i \leq 0$, $T_{i,i-1} = a_i I$ for i > 0, and $T_{i,j} = 0$ otherwise. Let B = T + Q. We claim that B is a unimodular contractive generator for $M_{\infty}(\mathfrak{A})$.

We show first that B is a contraction. Recall that $||A|| \le 1/2$, $a_1 = 1/2$, and $a_2 = 2/3$. Let $x = (x_n)_{n=-\infty}^{\infty} \in \sum_{n=-\infty}^{\infty} \oplus \mathfrak{R}$. Then

$$||Bx||^{2} = \sum_{-\infty}^{-1} ||x_{n}||^{2} + ||a_{1}x_{0}||^{2} + ||Ax_{0} + a_{2}x_{1}||^{2} + \sum_{2}^{\infty} ||a_{n+1}x_{n}||^{2}$$

$$\leq \sum_{-\infty}^{-1} ||x_{n}||^{2} + ||a_{1}x_{0}||^{2} + 2(||Ax_{0}||^{2} + ||a_{2}x_{1}||^{2}) + \sum_{2}^{\infty} ||x_{n}||^{2}$$

$$\leq \sum_{-\infty}^{-1} ||x_{n}||^{2} + ((1/2)^{2} + 2(1/2)^{2})||x_{0}||^{2} + 2(2/3)^{2}||x_{1}||^{2} + \sum_{2}^{\infty} ||x_{n}||^{2}$$

$$\leq ||x||^{2}.$$

Thus B is a contraction.

Next we show that $\sigma(B) \subset \{z: |z| \leq 1\}$. It suffices to show that if $|\lambda| < 1$, then $\lambda \oplus \sigma(B)$. Let $|\lambda| < 1$. By Lemma 2, T is a unimodular contraction. Thus $T - \lambda I$ is invertible. B = T + Q, so $B - \lambda I = (T - \lambda I) + Q = (T - \lambda I) [I + (T - \lambda I)^{-1}Q]$. Now simple matrix multiplication shows that $(T - \lambda I)^{-1}Q$ is nilpotent. (In fact if $A^n = 0$ and $C \in M_{\infty}(CI)$, then $(CQ)^n = 0$.) Hence $I + (T - \lambda I)^{-1}Q$ is invertible. Since $B - \lambda I$ is a product of invertible operators, $B - \lambda I$ is invertible and $\lambda \oplus \sigma(B)$.

Finally we sketch a proof that $\Re(B) = M_{\infty}(\alpha)$. As in Lemma 1, it suffices to show that $\Re(B)' = \{(\delta_{i,j}D)_{i,j=-\infty}^{\infty}: D \in \alpha'\}$. Let $C = (C_{i,j})_{i,j=-\infty}^{\infty} \in \Re(B)'$ with C selfadjoint. Then $BC = (E_{i,j})_{i,j=-\infty}^{\infty}$, where

$$E_{2,j} = AC_{0,j} + a_2C_{1,j},$$

 $E_{i,j} = C_{i-1,j}$ for $i \le 0$,

and

$$E_{i,j} = a_i C_{i-1,j}$$
 for $i > 0$, $i \neq 2$.

 $CB = (F_{i,j})_{i,j=-\infty}^{\infty}$, where

$$F_{i,0} = a_i C_{i,1} + C_{i,2} A,$$

 $F_{i,j} = C_{i,j+1}$ for $j < 0$,

and

$$F_{i,j} = a_{j+1}C_{i,j+1}$$
 for $j > 0$.

We are assuming that BC = CB and that $C_{i,j} = C_{j,i}^*$.

Let $n \ge 3$. Since $E_{0,n-1} = F_{0,n-1}$ and $E_{n,-1} = F_{n,-1}$, we find that $a_n C_{0,n} = C_{-1,n-1}$ and $a_n C_{-1,n-1}^* = C_{0,n}^*$. But $a_n \ne 1$, so $C_{0,n} = C_{-1,n-1} = 0$. Fix $n \ge 3$. Comparing $E_{k,k+n-1}$ and $F_{k,k+n-1}$, we find that $C_{k,k+n} = 0$. $\forall k$. But $E_{2,3} = F_{2,3}$ and $E_{4,1} = F_{4,1}$, so that $a_2 C_{1,3} = a_4 C_{2,4}$ and $a_2 C_{2,4}^* = a_4 C_{1,3}^*$. Since $a_2 \ne a_4$, we must have $C_{1,3} = C_{2,4} = 0$. It follows that $C_{k,k+2} = 0$. $\forall k$. Similarly, since $E_{2,2} = F_{2,2}$ and $E_{3,1} = F_{3,1}$, we get $a_2 C_{1,2} = a_3 C_{2,3}$ and $a_3 C_{1,2}^* = a_2 C_{2,3}^*$. Hence $C_{1,2} = C_{2,3} = 0$ and thus $C_{k,k+1} = 0$. $\forall k$. We have shown that $C_{k,n+k} = 0$. $\forall n \ge 1$ and $\forall k$. But $C_{i,j} = C_{j,i}^*$, so $C_{i,j} = 0$. $\forall i \ne j$.

Because $E_{k+1,k} = F_{k+1,k}$, we find that $C_{k,k} = C_{0,0} \ \forall k$. Finally, since $E_{2,0} = F_{2,0}$, we have $AC_{0,0} = C_{2,2}A = C_{0,0}A$, i.e., $C_{0,0} \in \mathfrak{C}'$. Therefore $\mathfrak{R}(B)' = \{(\delta_{i,j}D)_{i,j=-\infty}^{\infty} : D \in \mathfrak{C}'\}$. Since \mathfrak{A} is *-isomorphic to $M_{\infty}(\mathfrak{A})$, the proof is complete.

REMARK 3. Russo has shown (cf. [4, Theorem 1]) that if A is a unimodular contraction and $\Re(A)$ is finite, then A is unitary. It follows if A is any unimodular contraction, then $\Re(A)$ is of the form $\operatorname{C} \oplus \operatorname{C}$, where C is abelian and C is properly infinite.

REFERENCES

- 1. H. Behncke, Generators of W*-algebras (to appear).
- 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- 3. C. M. Pearcy, On certain von Neumann algebras which are generated by partial isometries, Proc. Amer. Math. Soc. 15 (1964), 393-395. MR 28 #4380.
- 4. B. Russo, Unimodular contractions in Hilbert space, Pacific J. Math. 26 (1968), 163-169. MR 37 #6769.
- 5. D. Topping, Transcendental quasinilpotents in operator algebras, J. Functional Anal. 2 (1968), 342-351. MR 38 #1535.
- 6. ——, Lectures on von Neumann algebras, Lecture notes, Tulane University, 1969.
- 7. W. Wogen, On generators for von Neumann algebras, Bull. Amer. Math. Soc. 75 (1969), 95-99. MR 38 #5020.

University of North Carolina, Chapel Hill, North Carolina 27514