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ON SPECIAL GENERATORS FOR PROPERLY
INFINITE VON NEUMANN ALGEBRAS!

W. R. WOGEN

ABSTRACT. It is known that every properly infinite von Neu-
mann algebra @ on a separable Hilbert space has a single generator.
We show in this paper that a generator for @ may be chosen from
some special classes of operators. In particular each of the follow-
ing classes of operators contains a generator for @: the hyponor-
mals, the nilpotents, the transcendental quasinilpotents, and the
unimodular contractions. We also show that a generator for @ may
be chosen with arbitrarily prescribed spectrum.

Introduction. Let 3¢ be a separable complex Hilbert space. A
von Neumann algebra @ is properly infinite if @ contains no finite
projections in its center. If 8 is an algebra of operators, 8’ denotes the
commutant of 8. For 2=n=<N, M,(S) denotes the algebra of
nXn matrices over § which act boundedly on > p..@®3c. Let
®(4, B, - - - ) denote the von Neumann algebra generated by the set
{4, B, - - - } of operators. The reader is referred to [2] and [6] as
references on von Neumann algebras.

Throughout this paper we will need the well-known fact that if @
is a properly infinite von Neumann algebra, then @ is *-isomorphic
to M,(@) for 1 =n <N, (cf. [6, Corollary 14]). Also, it is known that
a *-isomorphism of a von Neumann algebra @ onto a von Neumann
algebra ® carries a generator of @ onto a generator of ® (cf. [6,
p. 68]).

It was shown in [7] that if @ is a properly infinite von Neumann
algebra, then @ has a single generator. It then follows from [3,
Lemma 1] that @ has a partially isometric generator. In this note we
will construct some other generators for Q.

The author wishes to thank Professor D. Topping and Professor J.
Stampfli for many helpful conversations concerning the material
presented here.

Results. We begin with a lemma.
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LEMMA 1. Let 3<n <N, and let {ar}i-, and {M}i-, be bounded
sequences of complex numbers with a,#0 Yk. Let @ be a von Neumann
algebra with @ = R(A), where A satisfies |(Mm—N)A|| <|a1a:|. Define
B= (B.-,,-)Z,,IEM,.(Q) by B.',e =X.'I, B,'.H,.' =G,.'I, Ba,l =4 N and B.‘_j= 0
otherwise. Then ®(B)=M.(Q).

ProoF. We will show that G(B)'={(8:;D)}-1:DE@’}. It then
follows easily that ®(B)=®(B)" =M.(@). Let C=(C;,j))i;-1ER(B)’
with C selfadjoint (i.e., Ci ;= C*;;). Then BC=(E;,;)1s=1, where

Eis=MCuj  Esj= ACyi+ 0:Cos + MCayy
and for 151, 3,
Eij = 6:1Cir; + NCije
CB=(Fs;)is=1, where
Fi1 = MCi1+ a1Ci2 + Ci 34,
and Vj#1,
Fij = NCij + aiCiji

By assumption, BC=CB. Since E;1=F, and E,s=F1, we
have @1Ci2+C134=0 and a:Ci3=MN1—N)Ci2. It follows that
Cis(aiasl + (A1 — N)A4) = 0. But ”()\1 — )\2)/1“ < |ala2l S0 aa.l
+(Ai—N2)A4 is invertible, and Ci3=0. Thus also Ci»=0. Now
E,3;=F,; implies C1,4=0. Proceeding in this way we get Ci,x=0 for
k=2. Now if we compare E,,; and F;,;, we see by similar arguments
that C;x=0 for k=3. Continuing in this way we get C;,;=0 Vi<j.
C.',,'= C:i, SO C.’,,‘=0 V’L;ﬁ]

Since Eqi1,s=Fiu,;, we have C;1=C;,; for 1=1. Finally, since
E;1=F;;, we have ACia=C334A=C14. Cia is selfadjoint, SO
Ci.E®R(A) =a’. It follows that ®(B)'={(8.;D)i;-1:DEQR’} as
asserted.

DEFINITION 1. An operator 4 is kyponormal if A*4A—AA*=0.

Note that hyponormality is invariant under *-isomorphism.

THEOREM 1. If @ is a properly infinite von Neumann algebra on a
separable Hilbert space, then @ has a hyponormal generator.

Proor. Choose 4E@ such that ®(4)=@ and ||4||=1/2. Let
B=(B;,))i3-1E M.(R) be defired by Bs,1=1, Bs2=2I, Bi1,4=3I for
1=>3, Bsa=A4, and B;,;=0 otherwise. Then by Lemma 1, ®(B)
=M,(@). We assert that B is hyponormal. In fact, to show
B*B—BB* =0, it suffices to show that the 3 by 3 matrix



1971] PROPERLY INFINITE VON NEUMANN ALGEBRAS 109

I+ 4*4 24* 0
24 31 —A4*
0 —4 5I — A44*

is positive. This is a routine computation. Since @ is *-isomorphic to
M (@), it follows that @ has a hyponormal generator.

This theorem shows in particular that there exist hyponormal
operators 4 such that ®(4) is not type I.

We mention that H. Behncke has recently shown [1] that Theorem
1 is true with “hyponormal” replaced by “subnormal”.

REMARK 1. If 4 is hyponormal and ®(4) is finite, then 4 is normal
and ®(4) is abelian. (This holds because if ®(4) is finite, then there is
a unique center valued trace function 7 on ®(4) (cf. [2, Chapter III,
§4]) satisfying, in particular, (1) 7(CB—BC)=0 VB, CE®(4), and
(2) if P20 and 7(P)=0, then P=0. Hence if 4*4 —A4A4*=0, then
(A*4—A4A4*) =0, so A*A—AA*=0, and 4 is normal.) It follows
that if 4 is hyponormal, then ®(4) is of the form @GP &, where @ is
abelian and ® is properly infinite.

DEFINITION 2. An operator 4 is quasinilpotent if lim,..,, ||47||Y/»=0.
A is nilpotent of index n if A»=0 and A"1#0. 4 is transcendental
quasinilpotent if 4 is quasinilpotent but not nilpotent.

REMARK 2. Topping has shown [5, Theorem 3] that a properly
infinite von Neumann algebra is linearly spanned by its transcen-
dental quasinilpotents.

THEOREM 2. Let @ be a properly infinite von Neumann algebra on a
separable Hilbert space. Then @ has a transcendental quasinilpotent
generator.

PROOF. Let {@, }..; be a sequence of nonzero complex numbers with
lim,., a,=0.Let 4 be a generator of @. Define Q= (Q:,7);-1EM(Q)
by Qis1,s=a:l, Qi ;=0 otherwise. Then Q is a weighted shift, and it is
easy to show that Q is quasinilpotent. Let N = (N ;)i;-1E M(Q) be
defined by N;,1=4, N; ;=0 otherwise. Let B=Q+N. Then ®(B)
=M,(@) by Lemma 1. We claim that B is a transcendental quasi-
nilpotent. In fact, a computation shows that B»"=(Q+N)"=Q"
4 Q™ 'N. Thus ”Bn” Un — ”Qn_l_Qn—lN” Un< ”Qn—l” 1/n”Q+N” 1Un_5( as
n— o . Now note that transcendental quasinilpotence is a *-isomor-
phism invariant and that @ is *-isomorphic to M,(®). It follows that
@ has a transcendental quasinilpotent generator.

THEOREM 3. If n=3 and @ is a separably acting properly infinite
von Neumann algebra, then Q has a nilpotent generator of index n.
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Proor. If @=®(4), let B=(B;)};-1EM.(Q) be defined by
Biu,i=1, Bsa=A4, and B; ;=0 otherwise. Then ®R(B)=M.(@) by
Lemma 1, and B is nilpotent of index #. @ is *-isomorphic to M,(@),
so the theorem follows. (For » =3, this theorem is due to Pearcy and
Ringrose (unpublished).)

Let 0(4) denote the spectrum of 4. The next theorem asserts that
a properly infinite von Neumann algebra has generators with arbi-
trarily prescribed spectrum. More precisely,

THEOREM 4. Let @ be a properly infinite von Neumann algebra on a
separable Hilbert space 3¢ and let K be a nonempty compact subset of
the complex plane. Then there is an operator B in @ such that ®R(B) =@
and o(B) =K.

PROOF. Let { ak}:,l be a sequence of complex numbers such that
a;#0 Vk and limg,, ax=0. Let $ be a countable dense subset of K.
Form a sequence { )\k} 1 from 8 such that each element of 8 occurs
countably many times in the sequence. Choose 4 €@ with ®R(4) =@
and ||\ —N)4|| <|a1az].

LetN= (ai,j)\il):,;leM.o(a). Let Q= (Q,‘_,’)&-,EMQ(@) be defined
by Qiy1,i=ail, Qs1=4, and Q;,;=0 otherwise. Write B=(Q-+ N. Then
B is an operator on Y ., @3¢, where 3¢, =3 Vk. By Lemma 1,
®(B)=M,(@). We will show that ¢(B) =K.

Notice that NEo(B)=0&Eo(B—N\), and that the matrix B—A\
has the same form as B. Hence it suffices to show that 0&a¢(B)
S0EK = {M}-.

Suppose first that 0 {\¢}~. Then there is a subsequence { Ax; |30
such that limj,, A\x; =0. Choose x:;&3C;; with T =1, and 1dent1fy
xi; with the vector (0 0, - 0, Xkjy 0, :-)E D 1 P, whose only
nonzero entry is in the k; th position. Then ||Bx;,,l| <]|)\k,xk,” +||ak,xk,||
= IM [ +|ak,[ for k;>1. But limj,, ai;=lim;,, N\i;=0, so that
“Bxkj“ —0 as j—». Thus 0E¢(B). (This argument actually shows
that 0is in the approximate point spectrum of B.)

Now suppose that 0€ {\:}~—. Then N is invertible. In fact, N-!
= (8;,;\ 'I);5-1. Computing N-1Q, we find that N-1Q=(C: )1,
where Ciy1,i=Na:l, C31=N'4, and C; ;=0 otherwise. Then N—1Q
is quasinilpotent by the proof of Theorem 2, since limy., Aj410x=0.
Thus I+ N—1Q is invertible. But then B=N+4Q=N(I+N-1Q) is the
product of invertible operators, so B is invertible, i.e., 0¢a(B). The
theorem now follows since @ is *-isomorphic to M,(@).

DEFINITION 3. An operator 4 is a unimodular contraction if ||4|| <1

and o(4)C {z:]2| =1}.
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Note that the image under a *-isomorphism of a unimodular con-
traction is a unimodular contraction. In [4], Russo poses the ques-
tion: “Do there exist unimodular contractions of type 11, and III?”
The following theorem answers this question in the affirmative.

THEOREM 5. If @ s a properly infinite von Neumann algebra on a
separable Hilbert space 3C, then Q has a unimodular contractive gen-
erator.

We first prove a lemma.

LEMMA 2. Let {ax };‘Ll be an increasing sequence of positive numbers
such that lime,, ar=1. Let the operator T = (b;,;)ij= - on 1*(Z) be de-
fined by b; i 1=1for1=0,b;,1=a;for1>0,and b; ;=0 otherwise. Then
B is a unimodular contraction.

ProOF. T is a two-sided weighted shift. Obviously T is a contrac-

tion. But an easy computation shows that ||T‘"l| =1/a,a2 - - * @n.
Then

lim ”T-n“un = lim (1/a1as - - - @)¥» = 1,

n—wo n—ow

since limg., @»=1. Thus the spectral radius of 7! is 1, and it follows
that o(T) C {2:| 2| =1}.

Proor orF THEOREM 5. By Theorem 3, we can choose 4 €@ with
®(4)=@ and 4 nilpotent. Moreover, we may suppose || 4| <1/2.
Let an=n/(n+1) for n=1, 2, - - - . Define Q=(Qs,j)ij=-« EM(Q)
by Q:2,0=4 and Q; ;=0 otherwise. Define T'=(T,;);y- - « € M(Q) by
Tiia=1I for 120, T;;a=a:l for ©>0, and T;,;=0 otherwise. Let
B=T+Q. We claim that B is a unimodular contractive generator
for M (@).

We show first that B is a contraction. Recall that |4 =1/2,
a1=1/2, and a;=2/3. Let = (Xp)r- -« € D mn— D 3. Then

—1 ©
B2 = 22 [laall® + [l awwal|* + | 420 + aomi[* + 32 [|anyral|®
—w 2

-1 0
< Zllwall2 + lawol|2 + 20| Aaol|? + [[asmi|?) + 22 a2
—o0 2

IA

Sl + (172t + 20/l + 22/l + 2

= [laf=

Thus B is a contraction.
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Next we show that o(B)C {s:|2]| <1}. It suffices to show that if
I)\I <1, then N¢a(B). Let || <1. By Lemma 2, T is a unimodular
contraction. Thus T'—\I is invertible. B=T+Q, so B—N =(T—\I)
+Q=(T—\)[I+(T—\I)"'Q]. Now simple matrix multiplication
shows that (T'—\I)~'Qis nilpotent. (In factif A»=0and C&E M,(CI),
then (CQ)»=0.) Hence I+ (T —\NI)~'Q is invertible. Since B—\l is a
product of invertible operators, B—X\I is invertible and Ao (B).

Finally we sketch a proof that ®(B) = M,(@®). As in Lemma 1, it
suffices to show that ®(B)'= {(6.-,,'D),;‘°,__., :DER’'}. Let C
=(Ci)i--=ER(B)’ with C selfadjoint. Then BC=(E; )5 _,
where

Ez,,' = ACo,j + azCu,

Ei,j = C,'_l,,' fOl'i é 0,
and
E,"j = a.'Co'—-l,i fori > 0, 1 # 2.

CB=(F;,))i=~w, Where
Fio=aCi1+ Ci 4,

F{.,‘ = C.',j+1 fOl'j < 0,
and
F;; = a;11Ci,j1 forj > 0.

We are assuming that BC= CB and that C;,;= C};.

Let n=3. Since Egn-1=Foa and E,,_1=F, _;, we find that
@,Con=C_1,n1 and a,.Cfl,,,_l=C6'f,,. But @, #1, so Co,n=C_1,,1=0.
Fix n=3. Comparing Ekiyn-1 and Fi iin-1, we find that Cirin=0
Vk. But E;3=Fs3 and E4 3= F4,, so that a:C;,3=0a:C:,4 and 02C;:4
=a4C;':3. Since a;7as, we must have Ci3=C;,4=0. It follows that
Crri2=0 Vk. Similarly, since E;2=F;2 and E;,=F;; we get
a:C12=0a3Cs,;s and aaC:2=¢12CZa. Hence Ci2:=Ce3=0 and thus
Cix+1=0 Vk. We have shown that Ci .y x=0 V=1 and Vk. But
Cii= C;:;, so C;,;=0 Visj.

Because Ejxq1,5= Fii1,k, we find that Cx = Co,0 Vk. Finally, since
Ez,0=Fs,0, we have ACy,0=C224 =Cy,04, i.e., Co,0&E@'. Therefore
®R(B)' = {(8.-,,D);';-_.,:Dea'}. Since @ is *-isomorphic to M, (@),
the proof is complete.

REMARK 3. Russo has shown (cf. [4, Theorem 1]) that if 4 is a
unimodular contraction and ®(4) is finite, then 4 is unitary. It
follows if 4 is any unimodular contraction, then ®(4) is of the form
a® ®, where @ is abelian and ® is properly infinite.
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