INVARIANT MEASURES ON LOCALLY COMPACT SEMIGROUPS

ROGER RIGELHOF

ABSTRACT. The main result of this paper shows that a locally compact abelian semigroup is embeddable as an open subsemigroup of a locally compact abelian group G if and only if the translations $x \mapsto x+y$ are open maps and there exists a nonnegative regular measure μ on S such that $\mu(U) = \mu(x+U) > 0$ for every open set U and x in S.

Our main result is a somewhat stronger statement than the above in that we show that whenever such a measure exists it is the restriction to S of the Haar measure on G. This provides a partial answer to a question raised by J. H. Williamson in $[5, \S 5]$. We follow the terminology of [5] as regards semigroups and the measure theoretic terminology of [3]. In particular:

A locally compact abelian semigroup S is an abelian semigroup (not necessarily having a unit) which is a locally compact Hausdorff space such that for each y in S the map $x \mapsto x + y$ is continuous. We say that a locally compact abelian semigroup S is embeddable in a locally compact group G if there exists a bicontinuous semigroup monomorphism ϕ mapping S into G. The following proposition is of independent interest (see [4, Theorem 2.1 and Lemma 1.3]).

PROPOSITION. Let S be a locally compact abelian semigroup. The following conditions on S are equivalent.

- (1) S is a cancellation semigroup and for each open subset U of S, x+U is open for each x in S.
- (2) S is embeddable as an open subsemigroup of a locally compact group G.

PROOF. It is clear that (2) implies (1). To show that (1) implies (2) let R be the equivalence relation on $S \times S$ defined by $(x, y)R(x_0, y_0)$ if and only if $x+y_0=y+x_0$. It is well known and easy to show that $G=S\times S/R$ is an abelian group. For x in S let $\phi(x)$ be the equivalence class $\{(x+y, y):y\in S\}$. The map $\phi:x\mapsto \phi(x)$ is one-one and satisfies $\phi(x+y)=\phi(x)+\phi(y)$. We now define a topology on G. For x in S let $\mathfrak{B}(x)$ be the neighbourhood filter of x. Choose some x_0 in S and for

Received by the editors March 11, 1970.

AMS 1969 subject classifications. Primary 2875, 4250; Secondary 2205.

Key words and phrases. Invariant measures, Haar measures, locally compact abelian semigroups, topological semigroups.

each x in G let $x \cdot \mathbb{G}$ be the filter on G generated by the filter base $\{\phi(U) - \phi(x_0) + x \colon U \in \mathbb{G}(x_0)\}$. We first show that if $x \in S$, then $\phi(x) \cdot \mathbb{G}$ is generated by the filter base $\{\phi(U) \colon U \in \mathbb{G}(x)\}$. Given $U \in \mathbb{G}(x_0)$, $U + x \in \mathbb{G}(x_0 + x)$ and the continuity of $z \to z + x_0$ at x means there is a $V \in \mathbb{G}(x)$ with $V + x_0 \subset U + x$ and so $\phi(V) \subset \phi(U) - \phi(x_0) + \phi(x)$. Conversely given $V \in \mathbb{G}(x)$, $V + x_0 \in \mathbb{G}(x + x_0)$ and the continuity of $z \to z + x$ at x_0 means there is a $U \in \mathbb{G}(x_0)$ such that $U + x \subset V + x_0$ and so $\phi(U) - \phi(x_0) + \phi(x) \subset \phi(V)$. Therefore $\phi(x) \cdot \mathbb{G}$ is generated by $\{\phi(U) \colon U \in \mathbb{G}(x)\}$. We now show that there is a unique topology on G such that for each x in G, $x \cdot \mathbb{G}$ is the neighbourhood filter of x. For this it is sufficient by $[1, \text{ Chapitre 1}, \S1, \text{ No. 1}]$ to show for each x in G:

- (i) if $V \in x \cdot \mathcal{C}$ then $x \in V$;
- (ii) if $V \in x \cdot \mathbb{G}$ then there is a $W \in x \cdot \mathbb{G}$ such that $y \in W$ implies $V \in y \cdot \mathbb{G}$.

Clearly (i) is satisfied, so we show (ii). Let $V \in x \cdot \mathbb{G}$. Then there is an open neighbourhood U of x_0 such that $W = \phi(U) - \phi(x_0) + x \subset V$. If $y \in W$, there is a $u \in U$ with $y = \phi(u) - \phi(x_0) + x$ and there is a $V' \in \mathfrak{G}(x_0)$ such that $V' + u \subset U + x_0$. Thus

$$\phi(V') - \phi(x_0) + y = \phi(V') - \phi(x_0) + \phi(u) - \phi(x_0) + x$$

$$\subset \phi(U) - \phi(x_0) + x = W$$

and therefore $W \in y \cdot B$ so that (ii) is satisfied.

It is clear that G with this topology is a Hausdorff space and that the maps $x \mapsto x + y$ are continuous. Moreover for each x in S, $\phi(x) \cdot G$ is generated by $\{\phi(U): U \in G(x)\}$ so that ϕ is a topological embedding and $\phi(S)$ is an open subset of G. The continuity and openness of the map $x \mapsto x + y$ for each y in G together with the local compactness of S imply that G is locally compact. Thus G is a locally compact semigroup which is a group. A theorem of G. Ellis G0, Theorem 2 shows that G0 is a locally compact group. This completes the proof.

THEOREM. Let S be a locally compact abelian semigroup and μ a nonnegative regular measure on S. Suppose that S and μ satisfy the following condition.

(*) For each open set U, x+U is open for each x in S and $\mu(x+U) = \mu(U) > 0$.

Then S is embeddable as an open subsemigroup in a locally compact abelian group G and μ is the restriction of the Haar measure of G to S. Conversely if S is an open subsemigroup of a locally compact abelian group G, and if μ is the restriction to S of the Haar measure of G, then S is a locally compact abelian semigroup and S and μ satisfy condition (*).

1971]

PROOF. First suppose S and μ are given and satisfy (*). We begin by showing that S is a cancellation semigroup. If not there are x, y z in S such that y+x=y+z and $x\neq z$. There are open relatively compact neighbourhoods U of x and V of z such that $U\cap V$ is empty. Now

$$\mu((y+U) \cup (y+V)) = \mu(y+(U \cup V)) = \mu(U \cup V)$$

= $\mu(U) + \mu(V) = \mu(y+U) + \mu(y+V).$

Since regular measures are by definition finite on compacta it follows that $\mu((y+U)\cap(y+V))=0$ which is a contradiction because $(y+U)\cap(y+V)$ is a neighbourhood of y+x. Thus S satisfies the hypotheses of the above proposition so S is embeddable as an open subsemigroup of a locally compact abelian group G. In the following we identify S with its image in G.

Let $\mathcal{K}_S(G)$ be the continuous complex-valued functions on G which are zero outside of S and have compact support. Observe that the invariance property of μ means that if $f \in \mathcal{K}_S(G)$ then for each y in S,

$$\int_{S} f(x-y)d\mu(x) = \int_{S} f d\mu.$$

Choose $g \in \mathcal{K}_S(G)$ with $g \ge 0$ and $\int g \ d\lambda = 1$ where λ is the Haar measure on G. Then using the Fubini Theorem [3, p. 153] we have

$$\int_{S} f \, d\mu = \int_{S} f(x - y) \, d\mu(x) \int_{G} g(y) \, d\lambda(y)$$

$$= \int_{S} \int_{G} f(x - y) g(y) \, d\lambda(y) \, d\mu(x)$$

$$= \int_{S} \int_{S} f(y) g(x - y) \, d\lambda(y) \, d\mu(x)$$

$$= \int_{S} g(x - y) \, d\mu(x) \int_{S} f(y) \, d\lambda(y)$$

$$= c \int_{S} f \, d\lambda$$

where $c = \int_S g d\mu$. It follows now that for any Borel subset $E \subset S$, $\mu(E) = c\lambda(E)$ [3, p. 129]. This completes the proof of the first statement.

If S is an open subsemigroup of a locally compact abelian group, then it is clear that S is a locally compact abelian semigroup. More-

over since S is open the restriction of the Haar measure on G to S yields a nonnegative regular measure μ such that condition (*) is satisfied.

REFERENCES

- 1. N. Bourbaki, Livre III: Topologie générale. Chaps. 1, 2, Actualités Sci. Indust., no. 1142, Hermann, Paris, 1965. MR 39 #6237.
- 2. R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 19, 561.
- 3. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158.
- 4. N. Rothman, Embedding of topological semigroups, Math. Ann. 139 (1960), 197-203. MR 22 #6871.
- 5. J. H. Williamson, Harmonic analysis on semigroups, J. London Math. Soc. 42 (1967), 1-41. MR 34 #8101.

McGill University, Montreal, Quebec, Canada