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Abstract. Given a strong definition of "conformai map,"

there is a class of domains in C(X) conformally equivalent to the

open unit ball which are in a specific way "interiors" of curves.

1. Introduction. In 1943 E. R. Lorch [5] extended the idea of

"holomorphic function" to commutative Banach algebras with

identity. Briefly, if A denotes the algebra and / is a mapping from A

to A, then/ is called holomorphic at a point a EA if there is an algebra

element/'(a) such that for hEA we have

\\f(a + h)-f(a)-hf'(a)\\ = o(\\h\\)

as ||fe|| tends to zero. A mapping is holomorphic on an open set if it is

holomorphic at each point of the set. Lorch and others have shown

that many classical theorems of complex function theory carry over

to this more general setting. The Riemann mapping theorem cannot

be extended without some qualification.

Two open sets in a commutative Banach algebra will be called

"conformally equivalent" if there is a one to one mapping between

them which is holomorphic in both directions. A first try at a Riemann

mapping theorem might be that the open unit ball of the algebra is

conformally equivalent to every bounded homeomorph of itself. To

this B. W. Glickfeld gives the following counterexample [2, p. 45].

In the algebra C([0, l]) the set of functions/such that |/(x)| <1 for

0^x^1/2 and | f(x) \ < 2 for 1 /2 < x ^ 1 is not conformally equivalent

to the open unit ball. This set is a homeomorph of the open unit ball

under the mapping/—*g defined by

g(x) =/(*), |/(*)|   û m,

— e0[(l — m)r + m]/(2 — m),    otherwise,

wherem = max {|/(*)| :0^xál/2} and/(x) =re*'».

A class of domains conformally equivalent to the open unit ball of

the algebra will be described below. This class develops from Lorch's

extended notion of the interior of a curve. First, a "simple closed

curve" in an algebra A will be a continuous map T of the unit circle
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into A with the strong property: if M is any nonzero algebra homo-

morphism of A into the complex numbers, then MoT is a homeo-

morphism. In this definition the curve is the mapping rather than the

image. The image of each MoT is a Jordan curve in the plane.

Second, the "interior of V" is defined to be all elements aEA such

that M(a) is interior to the image of MoT in the usual sense for every

M as above. It is of course not evident that interior elements exist.

Later on I will use the fact that the interior of T is an open set. This

fact follows from the observation that if a is in the interior of V then

the distance from M(a) to the image of MoT is a continuous positive

function of M, that is, continuous on the maximal ideal space. The

maximal ideal space is compact, so there is a minimal distance d>0.

If ||¿>—a|| <d, then b also is in the interior of T.

The purpose of this paper is to prove

Theorem A. // X is a compact Hausdorff space and T is a simple

closed curve in C(X), then the interior of T is conformally equivalent to

the open unit ball of C(X).

In §5 it is shown that the classical theorem on extension of the

conformai map to the boundary also generalizes.

I list here some notational conventions. The letter A and the word

"algebra" will be used in place of "commutative complex Banach

algebra with identity." The complex plane C will be identified with

the complex multiples of the identity. The letter K will stand for

the open unit disc in C. The unit circle, which is the boundary of K,

will be written T and points on T will be written eiS. The letter M

will always stand for a nonzero homomorphism of A into C. A curve

or path will always be identified with a parametrization of the curve

or path.

2. The mapping function. Integrals along rectifiable paths in an

algebra A are defined in a manner strictly analogous to the definition

of complex integrals as limits of Riemann sums. One proves just as in

the classical case

Lemma 1. Let D be an open set in A and T a rectifiable path in A such

that when aET and aED, then a—a is invertible. Let g be an A-valued

function defined and continuous on T. Then the function f'.D—*A

defined byf(a) = (2tri)~1fr g(a)(a—a)'1 da is holomorphic.

As a special case, let I be the identity parametrization of the unit

circle in A. This parametrization defines a rectifiable simple closed

curve. The image of Mol is always T, so that the interior of J is the

spectral open unit ball of A, which we shall call S. For eieET and
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aES we know that eie — a is invertible. Thus for any continuous map

g : F—*A we define a holomorphic function <$„ : 5—>A by

*,(o) = (2m)-1 f g(e*)(e* - a)-1 de».

Consider a simple closed curve T : T-^A. Since Y is continuous, we can

form <ï>r. Under special conditions í>r is a conformai equivalence

between 5 and the interior of V.

Look first at the case A=C. Here T is a continuous complex

valued function on F, and 4>r is an ordinary holomorphic function on

K. Write TEH if T has a continuous extension to the closed unit disc

which is holomorphic on K. If TEH, then 3>r is that extension to K

and the function values $T(reie) converge uniformly in 6 to T(eie) as r

tends to one. This convergence property and the interior mapping

theorem show that4>r maps K onto the interior of T. Since T(eie) goes

around the interior of T just once as 6 goes from zero to 27r, the prin-

ciple of the argument shows that <£r is one to one. Thus 4>r is a con-

formal mapping of K onto the interior of T. Even if T is not in H, the

ordinary Riemann mapping theorem says there is some conformai

map f(z) of K onto the interior of T. Whenever a simply connected

domain in C is bounded by a Jordan curve any corresponding Rie-

mann mapping function extends to a homeomorphism of the bound-

aries [4, p. 367]; therefore f(reie) converges uniformly in 0 to a

homeomorphism f(eie) oí T onto the image of T. We see that any T

has at least a reparametrization fEH such that 4>/(z) =/(z) is a con-

formal mapping of K onto the interior of T.

Return to a general algebra. Say that a simple closed curve is H if

its composition with any functional M is in 22". Look at M o&r(S)

when r is an H simple closed curve. We recall that the integral which

defines "^(a) is a limit in the algebra norm of Riemann sums. Apply-

ing one of the algebra homomorphisms M to these sums and passing

to the limit, we get Jio$r(a) = &Mor(M(a)). Now^Mor is a conformai

mapping of K = M(S) onto the interior of MoT, because M o TEH. It

follows thataES implies that il2o4>r(a:) is in the interior of MoT for

every M. That is to say, &r(S) lies in the interior of T.

Supposing still that T is an H simple closed curve, we look for an

inverse to i>r- The function r_1:r(F)—>F is continuous, for T is con-

tinuous and one to one on the compact set F. Also if aET and ß is in

the interior of T, which is open, then a — ß is invertible. Assuming that

r is rectifiable, we can apply Lemma 1 and produce a holomorphic

function
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tviß) = (2«)-1 f T~Aa)(a - ß)~l da,
J r

which maps the interior of T into 5. For all M, Mo^ro\f/r(ß) = M(ß),

so if A is a semisimple algebra we can assert that 4>r and ^r are in-

verse to one another. In this case 4>r is a conformai equivalence

between 5 and the interior of T. In other words, in a semisimple

algebra the interior of a rectifiable H simple closed curve is con-

formally equivalent to the open unit ball.

3. Curves in C(X). If a simple closed curve T is not H, then the

mapping 4>r appears to be useless. It is heartening, however, that two

distinct curves in an algebra can have the same interior. To prove

Theorem A we shall prove

Theorem B. If X is a compact Hausdorff space, then every simple

closed curve in C(X) has the same interior as some H simple closed curve.

In the proof below let T be the simple closed curve. For each 6,

T(eie) is a function, whose value at a point xEX will be denoted

T(e<e, x). The nonzero complex homomorphisms of C(X) amount to

point evaluation. Consequently, for each fixed x, T(eiB, x) is a homeo-

morphism in eie of the unit circle into the complex plane. The image

curve has an H parametrization F(e<e, x) which is uniquely deter-

mined by the condition F(eie, x) =T(eie, x), 0 = 0, tt/2, w. To show this

uniqueness, observe that a conformai mapping of the complex unit

disc onto itself is determined by the images of any three boundary

points. For a fixed 0, F(eie, x) gives a function F(e<6) on X. The proof

will show that F(ea)EC(X), that as a mapping of T into C(X),F is

continuous, and that in fact F is an H simple closed curve whose

interior coincides with that of T.

Fix a point x0EX. Since the unit circle is compact and since

T: T-+C(X) is continuous, the family of functions {Tiea) :0 =0<2tt }

is equicontinuous at x0. That is, given a ô> 0, there is a neighborhood

U of Xo such that if x E U then for all 0

| r(e*, x0) - T(ea, x)\   < S.

Let €>0 be given. It is possible to choose the Ô above so that for all

xEUand all 0

(*) | F(e«, xo) - F(e*, x)\   < e.

For suppose not. There are in that case positive numbers 5„ tending

to zero and a sequence of points x„ in X (x„ in the U found above for
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ô = ô„) such that if we put gn(ea)=T(ea, xn) and fn(e*) = F(ea, xn),

re = 0, 1, • • • , then ||g0 — gB||u<ô„ and ||/0—/B||«èe. Here ||ä||„

= sups| h(ea)\. For re^O, gn(T) is a Jordan curve in the plane which

bounds a simply connected domain Dn. Because ||go — gn||«—*0, D0

and all but finitely many Dn contain a common point, which without

loss of generality we take to be zero. For « = 0, 1, • ■ • , let <pn(z) be

the conformai mapping of K onto Dn such that ^>B(0) =0 and <pá (0)

> 0. Since Dn is the interior of a Jordan curve, <pn extends to a homeo-

morphism of K~ onto F>B . It is a result of R. Courant that the map-

pings <pn converge uniformly on the closed unit disc to <po [l, Theorem

Ilia]. Courant's hypothesis is that the boundary curves given by the

gn converge uniformly to the curve given by go in the following sense

[l,p. 106]:

Definition. Es seien Ti, r2, r3, . . . unendlich viele Jordansche

Kurven und es existiere eine Jordansche Kurve T, die identisch ist

mit der Menge aller Punkte, welche einen mit wachsendem « gegen

Null konvergierenden Abstand von TB besitzen. Dann sagen wir,

daß die Kurven Tn gleichmäßig gegen T konvergieren wenn folgende

Bedingung erfüllt ist: Ist P ein Punkt auf T und sind Px, F2 zwei

Punkte innerhalb T, deren Abstand von P kleiner als e ist, so lassen

sich für hinreichend großes re die Punkte Px und P2 durch einen ganz

innerhalb Tn liegenden Streckenzug verbinden, dessen Länge unter-

halb einer von re, Pi und P2 unabhängigen, mit e gegen Null konver-

gierenden Schranke bleibt.1

Let r„ be the curve parametrized by gn and T by go- The condition

||go —gB||«—*0 implies that Tn converges uniformly to T in the sense

above. This is perhaps what the footnote alludes to.

Recall that, for each re, /„(e*9) gives the boundary values of the

conformai mapping/„(z) of K onto Dn which is determined by/n(et9)

= gn(eie), 0 = 0,7r/2, 7t. It follows that the functions hH=<pñ1 o/„ map

K conformally onto itself and satisfy hn(eie)-^h0(eie) for 0 = 0, w/2, ir.

Lemma 2. If functions hn map the unit disc conformally onto itself

and converge at three points on the unit circle, then they converge uni-

formly on the closed unit disc.

Proof. Assume without loss of generality that the hn converge

at 1, i and —1 to the identity map. For otherwise choose frac-

tional linear transformations u and v such that the sequence u o hn o v

meets the assumption and use the uniform continuity of u and v

1 Es ist leicht, diese Definition ihrer Beziehung auf das Innere der Kurven zu

entkleiden.
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on the closed disc. By the Schwarz Lemma [4, p. 236] hn(z)

= eia*(z — c„)/(l — cnz) where an is real and \cn\ <1. Since the cn are

bounded, we have

2(eia" - 1)

= (hn(\) - 1)(1 - cn) - ihni-D + D(l + £n)-*0,

e*»(l + i - 2cn) - (l + i)

= (¿»(i) - i)(i - sn) + (hn(i) - o(i - y -»o.

We read off successively that eia» tends to 1 and that cn tends to

zero. Since |z|^l implies | z — hn(z)\ ^ | 1 — e*'"»| +2| cn\ /(l — | cn\ ),

we are done.

It now follows that the functions /„= <pn o hn converge uniformly

to/o = ipo o h0; thus we cannot have ||/o—/n||u^e for all large n. Now

fix 0 and let x0 vary over X. One reads off from (*) that F(ea, x) is a

continuous function of x.

Again let e> 0 be given. For each x0EX let Ux„ be a neighborhood

of Xo such for x E Ux<s the inequality (*) holds. The space X is compact,

so choose points Xi, • • - , x„ such that X = UX^J • • • W Ux„. Recall

that, for each k, F(em, xk) is continuous in 0. Fix a real number <p and

choose neighborhoods V~i, ■ ■ ■ , Vn of <p so that 6EVk implies

| Fie», xk) - F(e*, xk) \   < e.

Put V= FiP\ • • • r\Vn. Choose any 0£ V and let x be an arbitrary

point of X. The point x lies in some neighborhood Uxk, l^k^n.

Adding and subtracting F(e<r, xk) and F(ea, xk) and expanding via

the triangle inequality we see that

| F(e^, x) - F(ea, x) |   < 3e.

That is, as functions of x, F(eiv, x) and F(eu, x) are uniformly closed.

The positive number e is arbitrary; therefore F maps T continuously

into C(X).

To finish the proof of Theorem B we need only refer to the defini-

tions of "H curve" and "interior," keeping in mind that the func-

tional M are evaluation at points of X.

4. Nonrectifiable curves. If the curve F constructed above is

rectifiable we can construct the inverse mapping i/t as in §2 and

conclude immediately that $f is a conformai equivalence between

the interior of F, which is the interior of T, and the open unit ball of

C(X).
If F is not rectifiable define \pr as follows. Let g be a function in the
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interior of F. Define the function h=\pF(g) on X by letting h(x) be

the inverse image of g(x) under the conformai mapping of K which

converges to the boundary mapping F(eie, x). We have hE\C(X). For

suppose to the contrary that h is not continuous at x0. For re = l,

2, • • • choose a neighborhood Un of x0 such that (*) holds with

e= 1/re. Since hn is not continuous at x0 we can find an 77 >0 and for

each re a point x„EUn such that | h(x0) — h(xn)\ sir/. Let /„ be the

conformai mapping of K determined by fn(ea) = F(eie, xn), w^O. By

the maximum principle |/o(z) —/B(z)| <l/w for |z| ál; The numbers

h(xn) lie in K and have a limit point y?¿h(xo) in K~. Pass to a sub-

sequence so that h(xn)—>y. Remembering that fn(h(xn)) =g(xn), we

see that, for each re,

I My) - /„(*(*„)) I ^ I My) - fo(h(xn)) \

+ \fo(h(xa)) -fn(h(xn))\ + I g(xn) - g(x0) 1.

Since /o is continuous at y and g is continuous at x0, the right-hand

side of the inequality goes to zero as re increases. Hence/0(y) =fo(h(xo)).

But that is impossible because/0 is one to one on K~.

At this point we have a mapping \pF from the interior of F into S,

the open unit ball of C(X). Clearly $j? and \¡/p are inverse to each

other; therefore QF maps 5 onto the interior of F. It is shown by

Glickfeld that if a one to one holomorphic function on a domain in

C(X) has open range then the inverse mapping is holomorphic. Apply

this result to <£f. We see that <ïv is a conformai equivalence between

S and the interior of F. In view of the construction of F from T,

Theorem A is proved.

5. Correspondence of the boundaries. Let F be an H simple closed

curve in C(X). For each xEX let F(z, x) be the function continuous

on K~ and conformai on K which agrees with F(eie, x) on F. If i>j? has

a continuous extension to the closure 5- of the unit ball, then the

continuity of the point evaluation functionals requires that g=$F(h)

be given by g(x) = F(h(x), x) for all hES~. We show now that

gEC(X) and that the extended mapping $F is continuous on S~.

For a fixed x, F(z, x) is a uniformly continuous function on the

compact set K~. Using relation (*), the maximum principle for ana-

lytic functions and the compactness of X, one proves by standard

methods that there is a single ô = 5(e) such that z, wEK~ and |z— w\

^5 imply I F(z, x) — F(w, x)\ ^e for all x. Suppose now that hES~

and let ô = ô(e). We have (1 — 8)hES, so that Í>/?((1 — ô)h) is a con-

tinuous function, and \\h — (1 — o)h\\ ^5, so that at each x the functions

$p(h) and $*■((! —8)h) differ by at most e. Thus $r(h), being a uni-
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form limit of continuous functions, is continuous. In addition we

apply the definition of 5(e) to two functions g and h in S~ and see that

||g — À||gô(e) implies ||3>i-(g)—$f(A)|| =«• That is, &p is uniformly

continuous on S-.

One extends the inverse mapping xpp to the closure of the interior

of F in the obvious way. Namely, the value of h=\¡/p(g) at x is the

inverse image under F(z, x) of g(x). One proves as in §4 that h is a

continuous function. Proceed in much the same way to show that

the mapping if/p is continuous—that is, assume the contrary and

deduce a contradiction to the fact that, for each x, F(z, x) is one to

one on K~. One thus proves

Theorem C If F is an H simple closed curve in C(X), then f>j? ex-

tends uniquely to a homeomorphism of the closed unit ball onto the

closure of the interior of F.
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