AN EXAMPLE OF HILTON AND ROITBERG

ALLAN J. SIERADSKI

ABSTRACT. In [3], P. J. Hilton and J. Roitberg illustrated with several examples the failure of cancellation for products in the homotopy category of finite CW complexes. We reconstruct here these examples from a different point of view.

1. Introduction. Each example of Hilton and Roitberg consisted of principal S³-bundles E_{α} and E_{β} over Sⁿ for which $E_{\alpha} \times S^{3} \simeq E_{\beta} \times S^{3}$ and yet $E_{\alpha} \not\simeq E_{\beta}$. If B_{S^3} is the classifying space of the Lie group S^3 and if $\alpha \in \pi_{n-1}(S^3)$ and $\alpha_0 \in \pi_n(B_{S^3})$ correspond under the canonical isomorphism, then denote by $p_{\alpha}: E_{\alpha} \to S^n$ the principal S^3 -bundle classified by $\alpha_0: S^n \to B_{S^3}$. They show that there is a supply of $\alpha, \beta \in \pi_{n-1}(S^3)$ with $\alpha \neq \pm \beta$, which guarantees that $E_{\alpha} \not\simeq E_{\beta}$, and with $p_{\alpha} \circ \beta_0 \simeq 0$ $\simeq p_{\beta} \circ \alpha_0$, which implies that the fibered product $E_{\alpha\beta}$ of the maps p_{α} and p_{β} satisfies $E_{\alpha} \times S^{3} \simeq E_{\alpha\beta} \simeq E_{\beta} \times S^{3}$. The resulting homotopy equivalence $E_{\alpha} \times S^3 \rightarrow E_{\beta} \times S^3$, which is not made explicit in [3], cannot be of the form $f \times g$ for then $f: E_{\alpha} \to E_{\beta}$ would induce isomorphisms on homotopy and hence would be a homotopy equivalence; it must be twisted. We present here these examples from the point of view of the cellular structure of the spaces $E_{\alpha} \times S^3$ and $E_{\beta} \times S^3$ to indicate how the homotopy equivalence $E_{\alpha} \times S^3 \rightarrow E_{\beta} \times S^3$ can be generated by a twisted homotopy equivalence $S^3 \times S^3 \rightarrow S^3 \times S^3$.

Let $m_r: S^3 \times S^3 \to S^3$ $(r=0, 1, \dots, 11)$ be the twelve multiplications on S^3 as enumerated by M. Arkowitz and C. R. Curjel in [1]. For $\alpha: S^{n-1} \to S^3$ define the map

$$g_{\alpha,r} = \alpha \times 1 \circ m_r : S^{n-1} \times S^3 \to S^3 \times S^3 \to S^3$$

(observing the "Hilton-Wylie" convention of writing composition of maps) and the adjunction space $E_{\alpha,r} = S^3 \cup_{g_{\alpha,r}} B^n \times S^3$. These spaces are related to the principal S^3 -bundles in that $E_{\alpha,0} = E_{\alpha}$ [3, Proposition 2.1]. We prove in §3 the following result.

THEOREM 1. Let α , $\beta: S^{n-1} \to S^3$ be used to construct $E_{\alpha,r}$ and $E_{\beta,s}$. If there exist integers n_{ij} (i, j = 1, 2) such that

- (i) $\det(n_{ij}) = \pm 1$,
- (ii) $n_{11} \alpha \simeq \beta \text{ and } n_{12} \alpha \simeq 0$,

Received by the editors February 4, 1970.

AMS 1969 subject classifications. Primary 5540.

Key words and phrases. Cancellation for products, finite CW complexes, twisted homotopy equivalence.

- (iii) $n_{1j}^2(2s+1) \equiv n_{1j}(2r+1) \mod 24 \ (j=1,2),$ and if.
- (iv) either s = 0, 2, 3, 5, 6, 8, 9, or 11,then there is a twisted homotopy equivalence $\{(\bar{n}_{ij})\}: S^3 \times S^3 \rightarrow S^3 \times S^3$ which extends to a homotopy equivalence $E_{\alpha,r} \times S^3 \rightarrow E_{\beta,s} \times S^3$.

For the remainder of this section we restrict our attention to r = s from the list (iv). Using Theorem 1 we can reprove [3, Corollary 2.2] and [3, Theorem 2.5].

THEOREM 2. Let α be of order k, $k_0 = \gcd(k, 24)$, ι prime to k, $\iota \equiv 1 \mod k_0$, $\beta = \iota \sigma$. Then $E_{\alpha,r} \times S^3 \simeq E_{\beta,r} \times S^3$.

PROOF. Since $\iota \equiv 1 \mod k_0$, we can find $n_{11} \equiv \iota \mod k$, $n_{11} \equiv 1 \mod 24$. Then n_{11} is prime to k and to 24 and hence to $n_{12} = 24 k$. Thus we have integers n_{ij} (i, j = 1, 2) with

- (i) $\det(n_{ij}) = 1$,
- (ii) $n_{11}\alpha \simeq \iota \alpha = \beta$ and $n_{12}\alpha = 0$, and
- (iii) $n_{1j}(n_{1j}-1)(2r+1) \equiv 0 \mod 24 \ (j=1,2).$

As in [3, Theorem 2.3] we can see that $E_{\alpha,r} \simeq E_{\beta,s}$ implies that $\alpha \simeq \pm \beta$ and so we have the immediate consequence of Theorem 2.

THEOREM 3. Let α be of prime order $p \neq 2$, 3, let ι be prime to p $\iota \not\equiv \pm 1 \mod p$, $\beta = \iota \alpha$. Then

$$E_{\alpha,r} \times S^3 \simeq E_{\beta,r} \times S^3, \quad E_{\alpha,r} \not\simeq E_{\beta,r}.$$

2. The abstract situation. We work in the category of k-spaces with base-point and base-point preserving maps, with composition of $f:A \rightarrow B$ and $g:B \rightarrow C$ written $f \circ g:A \rightarrow C$. The equivalence relation induced by homotopies which preserve base-points will be denoted by \simeq .

Given $g: X \times Y \to Z$ and the inclusion $c: X \to CX$ of X onto the base of its cone CX, the adjunction space $Z \cup_{\sigma} CX \times Y$ described by

$$\begin{array}{ccc} X \times Y \xrightarrow{c \times 1_{Y}} CX \times Y \\ \downarrow & \downarrow \\ Z \longrightarrow Z \cup_{q} CX \times Y \end{array}$$

is Hausdorff and hence is a k-space [4, 2.6]. We may therefore consider the above diagram as a push-out in the category of k-spaces. Since there is an unrestricted exponential law in this category, each product functor $-\times W$ preserves push-outs and hence

PROPOSITION 4. For any space W, the identity function

$$1: Z \times W \cup_{g \times 1} CX \times Y \times W \rightarrow (Z \cup_g CX \times Y) \times W$$

is a homeomorphism.

PROPOSITION 5. If $h: X \rightarrow X'$, $k: Y \rightarrow Y'$, and $v: Z \rightarrow Z'$ are homotopy equivalences, and if $g: X \times Y \rightarrow Z$ and $g': X' \times Y' \rightarrow Z'$ are maps such that $g \circ v \simeq h \times k \circ g': X \times Y \rightarrow Z'$, then there is a homotopy equivalence

$$Z \cup_{a} CX \times Y \rightarrow Z' \cup_{a'} CX' \times Y'$$

extending $v: Z \rightarrow Z'$.

PROOF. When Y and Y' are singletons, then $Z \cup_g CX \times Y$ and $Z' \cup_{g'} CX' \times Y'$ are the mapping cones of g and g'. In this special case the above result is standard and its proof [2, p. 40] can easily be modified to cover the general case.

From now on let Y and Y' be connected cellular spaces with multiplications $m: Y \times Y \to Y$ and $m': Y' \times Y' \to Y'$ (i.e., the codiagonal maps $\nabla \sim i \circ m: Y \vee Y \to Y \times Y \to Y$ and $\nabla \sim i' \circ m': Y' \vee Y' \to Y' \times Y' \to Y'$). Then given $\alpha: X \to Y$ and $\beta: X \to Y'$ we form

$$g_{\alpha} = \alpha \times 1 \circ m : X \times Y \to Y \times Y \to Y,$$

$$g_{\beta} = \beta \times 1 \circ m' : X \times Y' \to Y' \times Y' \to Y',$$

and the associated adjunction spaces $E_{\alpha} = Y \bigcup_{g_{\alpha}} CX \times Y$ and $E_{\beta} = Y' \bigcup_{g_{\beta}} CX \times Y'$. From the previous two propositions we have

COROLLARY 6. (i) $E_{\alpha} \times Y = Y \times Y \cup_{g_{\alpha} \times 1} CX \times Y \times Y$ and $E_{\beta} \times Y' = Y' \times Y' \cup_{g_{\beta} \times 1} CX \times Y' \times Y'$.

(ii) If $k: Y \times Y \to Y' \times Y'$ is a homotopy equivalence for which

is homotopy commutative, then k extends to a homotopy equivalence $E_{\alpha} \times Y \rightarrow E_{\beta} \times Y'$.

We now describe some special twisted homotopy equivalences $Y \times Y \rightarrow Y' \times Y'$. Let Z be a space with multiplication $n: Z \times Z \rightarrow Z$. Given four maps $k_{ij}: W \rightarrow Z$ (i, j = 1, 2) we define $\{(k_{ij})\}: W \times W \rightarrow Z$

 $\times Z$ to be the map with projections $\{(k_{ij})\} \circ p_j = p_1 \circ k_{1j} +_Z p_2 \circ k_{2j}$: $W \times W \to Z$ (j=1,2), where the sum $f +_Z g : A \to Z$ means $\Delta \circ f \times g \circ n : A \to Z$. For example, if $\delta_{ij} \colon Y \to Y$ is given by 0, 1_Y as $i \neq j$, i=j, then $\{(\delta_{ij})\} \simeq 1 \colon Y \times Y \to Y \times Y$. We can consider the four maps $k_{ij} \colon W \to Z$ (i,j=1,2) as determining a 2×2 matrix (k_{ij}) . We write $(k_{ij}) \simeq (h_{ij})$ if $k_{ij} \simeq h_{ij}$ (i,j=1,2), and so $(k_{ij}) \simeq (h_{ij})$ implies $\{(k_{ij})\} \simeq \{(h_{ij})\} \colon W \times W \to Z \times Z$. For $k_{ij} \colon Y \to Y'$ and $k_{ij} \colon Y' \to Y$ (i,j=1,2) we define matrix multiplication

$$(k_{ij})(h_{ij}) = \left(k_{i1} \circ h_{1j} + k_{i2} \circ h_{2j}\right),$$

$$(h_{ij})(k_{ij}) = \left(h_{i1} \circ k_{1j} + h_{i2} \circ k_{2j}\right),$$

and we say (h_{ij}) and (k_{ij}) are inverses if these products $(k_{ij})(h_{ij}) \simeq (\delta_{ij})$ and $(h_{ij})(k_{ij}) \simeq (\delta'_{ij})$. We do not claim that then $\{(k_{ij})\} \circ \{(h_{ij})\} \simeq 1_{Y \times Y}$ and $\{(h_{ij})\} \circ \{(k_{ij})\} \simeq 1_{Y' \times Y'}$, but nevertheless we prove

PROPOSITION 7. Given $k_{ij}: Y \rightarrow Y'$ (i, j = 1, 2), the map $\{(k_{ij})\}: Y \times Y \rightarrow Y' \times Y'$ is a homotopy equivalence if the matrix (k_{ij}) has an inverse.

PROOF. For $g: S^n \to Y \times Y$, $(n \ge 1)$,

$$g \circ \{(k_{ij})\} \circ p_j = g \circ \left(p_1 \circ k_{1j} + p_2 \circ k_{2j}\right)$$

$$= g \circ p_1 \circ k_{1j} + g \circ p_2 \circ k_{2j}$$

$$\simeq g \circ p_1 \circ k_{1j} + g \circ p_2 \circ k_{2j} \qquad (j = 1, 2)$$

where + is the homotopy associative-commutative binary operation determined by the standard comultiplication on S^n . If (h_{ij}) is a matrix inverse for (k_{ij}) then

$$\{(k_{ij})\}$$
 of $\{(h_{ij})\}_f = 1:\pi_n(Y \times Y) \rightarrow \pi_n(Y \times Y)$

and

$$\{(h_{ij})\}_{\sharp} \circ \{(k_{ij})\}_{\sharp} = 1 : \pi_n(Y' \times Y') \to \pi_n(Y' \times Y').$$

For example,

$$g \circ \{(k_{ij})\} \circ \{(h_{ij})\} \simeq g \text{ for } g: S^n \to Y \times Y \quad (n \ge 1)$$

since

$$g \circ \{(k_{ij})\} \circ \{(h_{ij})\} \circ p_{j} = g \circ \{(k_{ij})\} \circ (p_{1} \circ h_{1j} + p_{2} \circ h_{2j})$$

$$= g \circ \{(k_{ij})\} \circ p_{1} \circ h_{1j} + g \circ \{(k_{ij})\} \circ p_{2} \circ h_{2j}$$

$$\simeq (g \circ p_{1} \circ k_{11} + g \circ p_{2} \circ k_{21}) \circ h_{1j}$$

$$+ (g \circ p_{1} \circ k_{12} + g \circ p_{2} \circ k_{22}) \circ h_{2j}$$

$$= (g \circ p_{1} \circ k_{11} \circ h_{1j} + g \circ p_{2} \circ k_{21} \circ h_{1j})$$

$$+ (g \circ p_{1} \circ k_{12} \circ h_{2j} + g \circ p_{2} \circ k_{22} \circ h_{2j})$$

$$\simeq (g \circ p_{1} \circ k_{11} \circ h_{1j} + g \circ p_{1} \circ k_{12} \circ h_{2j})$$

$$+ (g \circ p_{2} \circ k_{21} \circ h_{1j} + g \circ p_{1} \circ k_{12} \circ h_{2j})$$

$$+ (g \circ p_{2} \circ k_{21} \circ h_{1j} + g \circ p_{2} \circ k_{22} \circ h_{2j})$$

$$= g \circ p_{1} \circ (k_{11} \circ h_{1j} + k_{12} \circ h_{2j})$$

$$+ (g \circ p_{2} \circ (k_{21} \circ h_{1j} + k_{12} \circ h_{2j})$$

$$+ (g \circ p_{2} \circ (k_{21} \circ h_{1j} + k_{22} \circ h_{2j})$$

$$\simeq g \circ \{(k_{ij})(h_{ij})\} \circ p_{j}$$

$$\simeq g \circ \{(k_{ij})(h_{ij})\} \circ p_{j}$$

for j = 1, 2.

Thus $\{(k_{ij})\}: Y \times Y \rightarrow Y' \times Y'$, as a weak homotopy equivalence between connected cellular spaces, is a homotopy equivalence.

THEOREM 8. Let $\alpha: X \to Y$ and $\beta: X \to Y'$ be used to construct E_{α} and E_{β} as prior to Corollary 6. If there exist four maps $k_{ij}: Y \to Y'$ (i, j = 1, 2) such that

- (i) the matrix (k_{ij}) is invertible,
- (ii) $\alpha \circ k_{11} \simeq \beta : X \rightarrow Y'$ and $\alpha \circ k_{12} \simeq 0 : X \rightarrow Y'$,
- (iii) $k_{1j}: Y \rightarrow Y'$ is an H-map for j = 1, 2, and if
- (iv) the multiplication $m': Y' \times Y' \rightarrow Y'$ is homotopy associative, then the map $\{(k_{ij})\}: Y \times Y \rightarrow Y' \times Y' \text{ is a homotopy equivalence which extends to a homotopy equivalence } E_{\alpha} \times Y \rightarrow E_{\beta} \times Y'$

PROOF. Condition (i) and the previous proposition show that $\{(k_{ij})\}$ is a homotopy equivalence. We use conditions (ii), (iii), and (iv) to show that

$$\alpha \times 1 \times 1 \circ m \times 1 \circ \{(k_{ij})\} \simeq 1 \times \{(k_{ij})\} \circ \beta \times 1 \times 1 \circ m' \times 1,$$

so that Corollary 6 is applicable:

$$\alpha \times 1 \times 1 \circ m \times 1 \circ \{(k_{ij})\} \circ p_{j}$$

$$\simeq \alpha \times 1 \times 1 \circ m \times 1 \circ (p_{1} \circ k_{1j} + p_{2} \circ k_{2j})$$

$$\simeq \alpha \times 1 \times 1 \circ m \times 1 \circ k_{1j} \times k_{2j} \circ m'$$

$$\simeq \alpha \times 1 \times 1 \circ k_{1j} \times k_{1j} \times k_{2j} \circ m' \times 1 \circ m'$$

$$\simeq (\alpha \circ k_{1j}) \times k_{1j} \times k_{2j} \circ 1 \times m' \circ m' \quad (j = 1, 2)$$

while

$$1 \times \{(k_{ij})\} \circ \beta \times 1 \times 1 \circ m' \times 1 \circ p_1$$

$$= 1 \times (\{(k_{ij})\} \circ p_1) \circ \beta \times 1 \circ m'$$

$$\simeq 1 \times (k_{11} \times k_{21} \circ m') \circ \beta \times 1 \circ m'$$

$$= 1 \times k_{11} \times k_{21} \circ 1 \times m' \circ \beta \times 1 \circ m'$$

$$= \beta \times k_{11} \times k_{21} \circ 1 \times m' \circ m'$$

$$\simeq (\alpha \circ k_{11}) \times k_{11} \times k_{21} \circ 1 \times m' \circ m'$$

and

$$1 \times \{(k_{ij})\} \circ \beta \times 1 \times 1 \circ m' \times 1 \circ p_2 = p_{Y \times Y} \circ \{(k_{ij})\} \circ p_2$$

$$\simeq p_{Y \times Y} \circ k_{12} \times k_{22} \circ m'$$

$$\simeq 0 \times k_{12} \times k_{22} \circ 1 \times m' \circ m'$$

$$\simeq (\alpha \circ k_{12}) \times k_{12} \times k_{22} \circ 1 \times m' \circ m',$$

where $p_{Y \times Y}: X \times Y \times Y \to Y \times Y$ is projection on the last two factors.

- 3. A concrete case. Let $X = S^{n-1}$, let Y be the three sphere S^3 with multiplication m_r , and let Y' be the three sphere S^3 with multiplication m_s . We claim that Theorem 1 is merely a rewording of Theorem 8 and we present the following facts in justification:
- (i) For each integer n, let $[n]: S^3 \to S^3$ be a map of degree n. Since $[n+m] \simeq [n] + [m]$, where $+ = +_Y$, $+_Y$, and $[n] \circ [m] \simeq [nm]$, then

$$([n_{ij}])([m_{ij}]) = ([n_{i1}] \circ [m_{1j}] + [n_{i2}] \circ [m_{2j}])$$

$$\simeq ([n_{i1}m_{1j} + n_{i2}m_{2j}]).$$

We conclude that the matrix of maps $([n_{ij}])$ is invertible iff the matrix of integers (n_{ij}) is invertible, or equivalently, iff $\det(n_{ij}) = {}^{+}1$.

(ii) For $\alpha: S^{n-1} \to S^3$ and integer n, we have $\alpha \circ [n] \cong n\alpha$.

- (iii) The map $[n]: S^3$, $m_r \rightarrow S^3$, m_s is an H-map iff $n^2(2s+1) \equiv n(2r+1) \mod 24$ [1, Theorem A].
- (iv) The multiplication $m_s: S^3 \times S^3 \to S^3$ is homotopy associative iff s = 0, 2, 3, 5, 6, 8, 9, or 11 [1, Theorem B and Remark 1].

REFERENCES

- 1. M. Arkowitz and C. R. Curjel, Some properties of the exotic multiplications on the three-sphere, Quart. J. Math. Oxford Ser. (2) 20 (1969), 171-176.
- 2. P. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965. MR 33 #6624.
- 3. P. Hilton and J. Roitberg, On principal S³-bundles over spheres, Ann. of Math. (2) 90 (1969), 91-107.
- 4. N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 35 #970.

THE UNIVERSITY OF OREGON, EUGENE, OREGON 97403