s ADMITS AN INJECTIVE METRIC

JOHN R. ISBELL

ABSTRACT. There is an injective metric space homeomorphic with a countably infinite product of lines.

Introduction. The category of metric spaces and contractions (mappings which increase no distance) has injective objects, indeed injective envelopes [3], but little is known about their structure. Their geometry is in a sense the worst possible; for E to be injective requires that however one attaches a plate to E consistent with the triangle inequality, it can be contracted into E. Their topology is in a sense the best possible. They are topologically injective and topologically complete [2]; the locally compact ones are locally triangulable at every homotopically stable point [3]. Beyond dimension 2 [3], it is quite unknown which finite polyhedra admit injective metrics.

This note adds one example: an injective metric space D is homeomorphic with the Banach space c of convergent sequences, and therefore (by Kadec [4] and Anderson [1]) with a product of lines s, and with many other geometrically different spaces. Such an example cannot be isometric with a Banach space [2]. The homeomorphism constructed from c to D is not uniformly continuous, and it bends all straight lines in c except for one parallel pencil. How much of that is necessary is quite unknown.

Proof. The example is the space D of sequences (x_i) of real numbers converging to a limit λ from above, i.e. $\lambda = \inf x_i$, with the distance $\sup |x_i - y_i|$ induced on D as a subspace of l_{∞} . l_{∞} is injective [2].

LEMMA. The pointwise maximum of two contractions from a metric space to the real line is a contraction.

PROOF. For two contractions f, g, and two points x, y, one of the four numbers f(x), f(y), g(x), g(y) is largest, say f(x). Then $f(x) - d(x, y) \le f(y) \le (f \lor g)(y) \le f(x) = (f \lor g)(x)$; so $|(f \lor g)(x) - (f \lor g)(y)| \le d(x, y)$.

THEOREM 1. D is a retract of l_{∞} and therefore injective.

PROOF. For $x = (x_i)$ in l_{∞} , let $\lambda(x) = \limsup x_i$ and $p_i(x) = x_i \vee \lambda(x)$.

Copyright @ 1971, American Mathematical Society

Received by the editors January 6, 1970.

AMS 1969 subject classifications. Primary 5435.

Key words and phrases. Metric space, injective, contraction.

By the lemma, p_i is a contraction. Hence $P(x) = (p_i(x))$ defines a contraction, evidently a retraction upon D.

THEOREM 2. D is homeomorphic with c.

PROOF. Since c is evidently homeomorphic with $c_0 \times R$ (c_0 the space of sequences converging to 0) and D with $D_0 \times R$ (D_0 the nonnegative sequences converging to 0), it suffices to give a homeomorphism $f:c_0 \to D_0$. For $(x_1, x_2, \dots) \in c_0$, put $x_0 = 0$. Then f(x) = y is defined by $y_i = x_{i-1}^- + \sum_{j=i}^{\infty} 2^{i-j} x_j^+$ (where $x^- = -x \vee 0$, $x^+ = x \vee 0$). So f is Lipschitzian, increasing no distance by more than a factor of 3. By inspection, f takes values in D_0 .

To describe the inverse of f, note first that for any sequence $\{z_i: i=1, 2, \cdots\}$, the equations $x_0=0$, and $2x_{i-1}^-+2x_i^+-x_i^-=z_i$ determine a unique sequence $\{x_i: i=0, 1, 2, \cdots\}$. If $y \in D_0$, define x by $x_0=0$ and

(*)
$$2x_{i-1}^- + 2x_i^+ - x_i^- = 2y_i - y_{i+1}$$

and put $g(y) = (x_1, x_2, \cdots)$.

We shall now prove the inequalities $x_i^+ \leq y_i$ and $x_i^- \leq y_{i+1}$ for $y \in D_0$ and i > 0. The former is immediate since either $x_i^+ = 0$ or from (*) $2x_i^+ \leq 2y_i$. To prove the latter, assume to begin with that $x_{i-1}^- = 0$. Then $x_i^- = 0$ or $x_i^- = y_{i+1} - 2y_i \leq y_{i+1}$. Suppose now that x_{i-1}^- , x_{i-2}^- , \cdots , $x_{i-k}^- > 0$, but $x_{i-k-1}^- = 0$. Then $x_{i+1}^+ = x_{i-2}^+ = \cdots = x_{i-k}^+ = 0$, and a linear combination of equations (*) for $i, i-1, \cdots, i-k$ gives

$$2x_i^+ - x_i^- = 2^{k+1}y_{i-k} - y_{i+1}.$$

Again either $x_i^- = 0$ or $x_i^- \leq y_{i+1}$.

The inequalities just proved show that $x_i \rightarrow 0$; i.e. $g(y) \in c_0$. To prove that g is continuous at y, let $\epsilon > 0$ be given. Choose n so that $i \ge n \Rightarrow y_i < \epsilon/3$. If $z \in D_0$ and $||z-y|| < \delta = \epsilon/3n$, then (*) shows by induction that $|g(z)_i - g(y)_i| = |g(z)_i - x_i| < 3i\delta \le \epsilon$ for $i = 0, 1, \dots, n$. For i > n we have

 $\left| g(z)_i \right| \leq \max\{z_i, z_{i+1}\} < \max\{y_i, y_{i+1}\} + \delta \leq \epsilon/3 + \delta \leq 2\epsilon/3$

and

$$\left| g(y)_i \right| \leq \max \{ y_i, y_{i+1} \} \leq \epsilon/3.$$

Thus $\|g(z) - g(y)\| < \epsilon$.

Finally we must show that f and g are inverses. If y = f(x) we see from the definition of f that the components of x satisfy (*). Hence x = g(y); i.e., gf is the identity on c_0 . If x = g(y) and $\bar{y} = f(x)$, then (*)

260

and the definition of f lead to $2\bar{y}_i - \bar{y}_{i+1} = 2y_i - y_{i+1}$. Hence $\bar{y}_{i+1} - y_{i+1} = 2(\bar{y}_i - y_i) = 2^i(\bar{y}_1 - y_1)$. Since both \bar{y} and y are in D_0 , this implies $\bar{y} = y$. Thus fg is the identity on D_0 . This completes the proof.

References

1. R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519. MR 32 #8298.

2. N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439; correction, ibid. 7 (1957), 1729. MR 18, 917; MR 19, 1069.

3. J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65-76. MR 32 #431.

4. M. I. Kadec, Topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23–25 = Soviet Math. Dokl. 7 (1966), 319–322. MR 34 #1828.

STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST, NEW YORK 14226