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5 ADMITS AN INJECTIVE METRIC

JOHN R. ISBELL

Abstract. There is an injective metric space homeomorphic

with a countably infinite product of lines.

Introduction. The category of metric spaces and contractions

(mappings which increase no distance) has injective objects, indeed

injective envelopes [3], but little is known about their structure.

Their geometry is in a sense the worst possible; for E to be injective

requires that however one attaches a plate to E consistent with the

triangle inequality, it can be contracted into E. Their topology is in a

sense the best possible. They are topologically injective and topo-

logically complete [2]; the locally compact ones are locally tri-

angulable at every homotopically stable point [3]. Beyond dimension

2 [3], it is quite unknown which finite polyhedra admit injective

metrics.

This note adds one example: an injective metric space D is homeo-

morphic with the Banach space c of convergent sequences, and there-

fore (by Kadec [4] and Anderson [l]) with a product of lines s, and

with many other geometrically different spaces. Such an example

cannot be isometric with a Banach space [2]. The homeomorphism

constructed from c to D is not uniformly continuous, and it bends all

straight lines in c except for one parallel pencil. How much of that is

necessary is quite unknown.

Proof. The example is the space D of sequences (x¿) of real num-

bers converging to a limit X from above, i.e. X = inf x„ with the dis-

tance sup| Xi—y¿| induced on D as a subspace of /„. lx is injective [2].

Lemma. The pointwise maximum of two contractions from a metric

space to the real line is a contraction.

Proof. For two contractions/, g, and two points x, y, one of the

four numbers fix), f(y), g(x), g(y) is largest, say f(x). Then f(x)

-dix, y) á/(y) á ifVg)(y) áfix) = ifVg)(x) ; so | (fVg) (x) - ifVg)(y) |
= ¿(x,y).

Theorem 1. Dis a retract of lx and therefore injective.

Proof. For x = (x.) in /«,, let X(x) =lim sup x, and pA%) =x<\/X(x).
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By the lemma, pi is a contraction. Hence P(x) = (pi(x)) defines a

contraction, evidently a retraction upon D.

Theorem 2. D is homeomorphic with c.

Proof. Since c is evidently homeomorphic with coXR (co the space

of sequences converging to 0) and D with D0XR (D0 the nonnegative

sequences converging to 0), it suffices to give a homeomorphism

f:c0—>Do. For (xx, x2, ■ ■ -)Eco, put Xo = 0. Then/(x) =y is defined by

yi=*i-i+2^"i 2i~,xf (where x~=— x\/0, x+=x\/0). So/ is Lips-
chitzian, increasing no distance by more than a factor of 3. By in-

spection,/ takes values in D0.

To describe the inverse of /, note first that for any sequence

{zí'.¿ = 1, 2, ■ ■ • }, the equations Xo = 0, and 2xJ_x+2xt — x¡"~ =z(

determine a unique sequence {xj:¿ = 0, 1, 2, • • • }. If yEDo, define

x by xo = 0 and

(*) 2x,-_i + 2xí — Xi  = 2y,- — yi+1

andputg(y) = (xi, x2, • • • )•

We shall now prove the inequalities xf ^y¿ and x~ ?Sy,+i for yEDo

and ¿>0. The former is immediate since either x¿+=0 or from (*)

2x¡+ ̂  2y¿. To prove the latter, assume to begin with that x¿"li = 0. Then

Xj~=0 or x¿" =y,+i —2y,^yi+i. Suppose now that xj_i, x»_2, • • ■ ,

xj1t>0, but xilt_1=0. Then xitL1=xi"lL2= • ■ • =x¿t* = 0, and alinear

combination of equations (*) for ¿, ¿—1, • • • , ¿ — A gives

2xí — Xi = 2    yi-k — y,-+i.

Again either xj = 0 or x~ áy»+i.

The inequalities just proved show that x¿—>0; i.e. g(y)Gco- To

prove that g is continuous at y, let e>0 be given. Choose « so that

¿^re=»y¿<e/3. If zG-Do and ||z— y\\ <5 — e/3n, then (*) shows by

induction that \g(z)i—g(y)¡\ =|g(z)¿ — x,| <3¿o^e for ¿=0, 1, • • • ,

re. For ¿ > re we have

| g(z)i\   ^ max{Zy z,+1}  < max{y¿, y<+1} + í á e/3 + í ^ 2e/3

and

| g(y)i|   ^ max{y,-, yt>i} ^ e/3.

Thus||g(z)-g(y)||<6.

Finally we must show that/ and g are inverses. If y =/(x) we see

from the definition of/ that the components of x satisfy (*). Hence

x =g(y) ; i.e., g/ is the identity on c0. If x =g(y) and y =/(x), then (*)
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and the definition of/ lead to 2y¿ — y,-+i = 2y;—y,-+i. Hence y,-+i—y¿+i

= 2(y,—y,) =2*'(yi—yi). Since both y and y are in Do, this implies

y=y. Thus/g is the identity on DB. This completes the proof.
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