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ON ALGEBRAS OF OPERATORS WITH TOTALLY
ORDERED LATTICE OF INVARIANT SUBSPACES

JOHN B. CONWAY1

Abstract. For a Hubert space 3C, let ft be a weakly closed

algebra of bounded operators on 3C which contains the identity,

ft is said to be transitive if no closed subspace of 3C is invariant

under ft. There are no known proper subalgebras of ffi(3C) which

are transitive. In this paper it is shown that the only transitive

algebra which satisfies a certain condition ß is Gs(X). Further-

more, a generalization of condition ß is given which characterizes

those algebras with totally ordered lattice of invariant subspaces

that are reflexive.

Let 3C be a Hubert space and let (B(3C) be the algebra of bounded

operators on 3C. Let ft be a subalgebra of (B(3C) which contains the

identity and which is closed in the weak operator topology (WOT).

We denote by Lat ft the lattice of subspaces of 3C which are invariant

under all the operators in ft. Also, if £ is a lattice of subspaces of 3C,

we denote by Alg <C the algebra of all operators which leave these

subspaces invariant. An algebra ft is called reflexive if ft = Alg Lat ft.

By means of von Neumann's double commutant theorem and some

basic results in the theory of von Neumann algebras, every WOT

closed selfadjoint algebra is reflexive. Hence, the search for reflexive

algebras is a search for algebras which satisfy a version of the double

commutant theorem.

In [4] Radjavi and Rosenthal studied algebras ft for which Lat ft

is totally ordered and proved in this case that ft is reflexive if and

only if ft contains a masa (maximal abelian subalgebra of (B(3C)). In

this paper we will examine other necessary and sufficient conditions

for such algebras to be reflexive.

If 3TC£Lat ft and P is the orthogonal projection onto 3TC then ftP

is the subalgebra of G3(3TC) consisting of all restrictions of elements

of ft to 3TL We say that ft satisfies condition a if for each 3TC in Lat ft

the only linear operators defined on a dense ft invariant manifold of

311 (and taking values in 311) which commute with members of ftP

are the multiples of the identity.
_
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Now let M be any subspace of 3C; let ft be a fixed algebra. We define

the annihilator of M by

ann M = \A £ a: Ax = 0 for all x E M).

It is easy to see that ann M is a WOT closed left ideal of ft. If ¿J is a

left ideal of ft then we define the kernel of ¿J by

ker¿) = [x E VI'. Ax = 0 for each A in $}.

Clearly ker ¿J is a subspace of 3C and MC ker ann .M". We say that ft

satisfies condition ß if for each finite dimensional subspace M of

3C, M = ker ann Af.

Remark. Condition ß was inspired by a presentation of the Artin-

Wedderburn Theorem due to J. Täte which can be found in the article

by Artin [l].

A special case of an algebra with a totally ordered lattice is a tran-

sitive algebra; that is, an algebra with Lat ft = {(0), XJ. Arveson

[2] proved that a transitive algebra which contains a masa is (B(3C),

and hence is reflexive. In fact, his paper was the inspiration for the

Radjavi-Rosenthal Theorem as well as the curiosity of the present

author.

We can now state and prove the following theorem for transitive

algebras which will be the archetype for our results on algebras with

totally ordered lattice.

Theorem A. Let Q, be a WOT closed transitive subalgebra of (B(3C)

which contains the identity. Then the following are equivalent :

(a) ft is reflexive (and hence is 03 (3C));

(b) Ct contains a masa;

(c) ft satisfies condition a;

(d) ft satisfies condition ß.

Proof. That (a) implies (b) is clear. To prove that (b) implies (c)

let T be an operator densely defined on 3C which commutes with ft.

Then T has a (possibly unbounded) normal closure [2, p. 643], which

we will also denote by T. It follows from Fuglede's Theorem [3] that

the spectral projections of T also commute with ft. But since Lat ft

= {0, 3C} these projections can only be 0 or /. Thus, T=\I for some

scalar X.

(c) implies (d). We proceed by induction ; let x ¿¿ 0 and y G ker ann [x ]

(for SC3C, [S] is the closed linear subspace spanned by S). Then

x£[ftx]GLat ft so that [ftx] = 3C. Also, yEker ann [x] means that

if A E ft and ^4x = 0 then Ay = 0. Thus if we set T(Ax)=Ay for each

A in ft, T is a densely defined linear operator which is easily seen to
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commute with ft. Thus, there is a scalar X with Ay=\Ax for each

A E ft. In particular, by taking A = 2" we get y = XxE [x ], so ker ann [x ]

= [x] for x^O.

Now suppose we have ker ann N = N for all re dimensional spaces

N and let M be (re + l)-dimensional. Let N be any n dimensional

subspace of M and let xEM with xCjE/V. Put ¿J = ann N; then ann M

= $C\ann [x] and ker ann M = ker(gi^ann [x]).

Since ,0 is a left ideal of ft we have [$x]£Lat ft. If [$x] = (0) then

x£ker g = N which is false. Thus, [¿Jx] = 3C. Fix y£ker ann M. If

AEg and ^4x = 0 then ^4£ann M and so ^4y = 0. Thus T(Ax)=Ay

for AEâ is densely defined and commutes with ft. By (c) we have a

scalar X so thatX^4x=v4y for each A in g. This says that y—XxGker g

= N oryEM.

(d) implies (a). We show that ft is WOT dense in Û3(3C). That is,

let {xx, • ■ ■ , xn\ be linearly independent in 3C and  {yi, ■ • • , yBJ

C3C; we will show that for each e>0 there is an A E ft with ||^4xj — y3\\

<e for \Sjun. Let M¡ be the span of   {xi'.i^j}. Then xj(£Mj

= ker ann Mj\ thus there is a F,£ann M3 with Bjx3^0. Since ft is

transitive    there   is   an   A3E&   with    |[^4y23yXy—yy|| <e.    Let   A

= ^4iFi+ • ■ ■ +^4BFBGft. It is easy to check that A is the desired

operator. This completes the proof.

Conditions a and ß are not equivalent to reflexivity if we do not

assume that ft is transitive. For example if ft is the von Neumann

algebra of all multiplication operators on 3C = F2(0, 1) and x is the

identically one function then ker ann [x] = 3C. Even if we assume

that Lat ft is totally ordered it does not follow that conditions a and

ß imply reflexivity. For example let ft be the algebra consisting of all

3X3 matrices

a   0   0

c    a   0

d    e    b

where a, b, c, d, e are arbitrary scalars. Then ft has totally ordered

lattice, satisfies conditions a and ß, but is not reflexive.

Before formulating the result for algebras with totally ordered

lattice let us first state an easy lemma without proof.

Lemma 1. Suppose Lat ft is totally ordered; let 3TC£Lat ft and

let P be the orthogonal projection on 3TC. Then :

(a) Lat(ftP) = {31:31 £ Lat ft and 91 C 3H}.

2/ Û3 is a masa contained in ft then PE<$> and ($>P is a masa contained
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in aP. (b) If we consider P-LdP-LC(Sl(yil±) then Lat^aP1-)

= {31© 311:31E Lat ft and 313 3ÍI}. If (S, is a masa contained in ft then

ffiPx is a masa in (S> (3TC-1-).

If Lat ft is totally ordered but finite then it would seem that

Theorem A could be formulated and proved by considering the

algebra induced by ft on 3C/3TC for each 31Z in Lat ft. This is indeed

the case even if Lat ft is not finite. However we will work with the

algebras P-'-ftP-1 instead of these induced algebras. Say that ft satis-

fies condition a (or respectively, condition ß) on quotients if and only

if for each 3TC£Lat a, P-LftP-1 Cu3(3TCx) satisfies condition a (resp.,

condition ß). We can now state the main result.

Theorem B. Let a be a WOT closed subalgebra of 03(X) containing

the identity and with Lat a totally ordered. Then the following are

equivalent :

(a) a is reflexive ;

(b) a contains a masa;

(c) a satisfies condition a on quotients and ft contains the orthogonal

projections on the members of Lat ft ;

(d) ft satisfies condition ß on quotients.

Before proving this theorem we will give some preliminary lemmas.

If n is an integer then let 3C(b) be the direct sum of n copies of 3C. Let

Am=YJ¡-\ ® A i where A¡ = A. Define ft(n)= {A<n):AE&} C03(3C(n)).
A proof of the following well-known lemma can be found in [5,

p. 684].

Lemma 2. If d is a weakly closed subalgebra of 03(3C) containing the

identity and 5£03(3C) is such that Lat ft(n)CLat BM for each w^l

then BE ft.

Lemma 3. Let ft satisfy condition ß and suppose 5£(B(3C) is such

that Lat ft«'CLat B<-k) for láJ&S«. If 31X£Lat ft(n+1) does not meet

at least one of the coordinate spaces then 3TC£Lat -B(n+1).

Proof. We may assume that 3TC misses the last coordinate space,

i.e., 3Tin(3C(n)©(0)) = (0). Let (xi, • • ■ , x„+i)£31î; we must show

that (Bxi, • ■ ■ , Bxn+i)E^- We can assume without loss of generality

that 3TC= [ft(n+1)(xi, ■ • • , x„+i)]. Since 3TC misses the last coordinate,

if ^4£ft satisfies Axi= ■ ■ ■ =^4x„ = 0 then v4x„+i = 0. That is,

ann[xi, ■ • • , x„]Cann[xn+i], so that by condition ß we get xn+i

E [xi, ■ • ■ , Xn]. Hence there are scalars Ci, ■ ■ ■ , cn such that xn+i

= CiXi+ • • • +cnx„. Therefore,
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3TC=    ( Axx, ■ ■ ■ , Axn,  ^2 cjAxj) :A E ft   •

If we put

9TCi = {(yi, • • ' » y«) ' (Vu • • ■ , y»+x) E 3TC for some yB+i E X],

then 3TCi is closed in 3C(n) and 3TCi£Lat ft(n). By hypothesis we get

3TCiELat 23<n). Hence, (23xi, • • • , Bxn) E91Xi and so (Bxly ■ ■ ■ , Bxn+1)

= (23xi, • • • , Bxn, ^y cy23xy)£9TC, completing the proof of the lemma.

Remark. Those familiar with Radjavi and Rosenthal [é] will have

noticed a similarity between the preceding lemma and their Lemma

3. Also the strategy we will employ in proving that (d) of Theorem B

implies (a) is theirs [4, p. 688].

Proof of Theorem B. The proof that (a) implies (b) can be found

in [4, p. 691].
(b) implies (c). If 3TC(ELat ft and P is the orthogonal projection of

3C onto 3U then P must commute with each member of (B, the masa

in a. Hence each P is in (B C a.

By Lemma 1, P-LaP-L contains a masa and has totally ordered

lattice. If we can show that such algebras satisfy condition a, we

will be done. Again aP (by Lemma 1) also satisfies these conditions;

so if we can prove that an operator F defined on a dense a invariant

manifold of 3C which commutes with a is a multiple of the identity

then we will be done. But such a F has normal closure [2, p. 643] and,

as in the proof of Theorem A, the spectral projections must commute

with a. Since Lat a is totally ordered T must be a multiple of the

identity.

(c) implies (d). We will show that condition a implies condition ß;

with this and Lemma 1 we will have proven this implication. We

proceed by induction on the dimension of M EX.

Let Xr^O be any vector in 3C and let y G ker ann [x]. That is, A E a

and ^4x = 0 implies that ^4y = 0. If 9TC= [ax] and P is the orthogonal

projection on 3TC£Lat a then PE Q, by hypothesis. Hence P±x = 0

implies P-Ly = 0; or, y £911. (Remark: The only place where the addi-

tional hypothesis in (c) is needed is to get y in 3TC and a similar fact

later in this proof. It seems likely that the only part of (c) needed is

that a satisfies condition a.) If we set TiAx) =^4y for A in a then F

is a well-defined linear operator from dx into ayC3TC. Also T com-

mutes with a. Hence, there is a scalarX with F = X/; that is, .¡4y=X^4x

for each AE&- In particular, we get y = Xx E [x ], so [x]= ker ann [x ].

Now suppose ker ann M= M whenever M has dimension re. Let M

be re dimensional and xE\M. Put ¿) = ann M; then 3TC= [¿fcJ^O) by
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the induction hypothesis and 3TC£Lat ft since g is a left ideal of ft.

Let P be the orthogonal projection on 3TC. If A Eg = ann M then

P-t-AEan^M, x]. So if y£ker ann[Af, x] then A Eg implies PLAy

= 0; that is AyE^l= [gx]. Therefore if we let T(Ax) =Ay for AEg

then, as before, it follows that T = ~KI for some scalar X. Thus,

A(y— Xx)=0 for each AEg; or, y— Xx£ker ann M = M so that

ker ann [if, x]= [M, x].

(d) implies (a). Let 5£(B(3C) and suppose Lat ftCLat B. By

Lemma 2 we must show that Lat a(n)CLat Bw for each integer

»el; we proceed by induction. The case « = 1 is the hypothesis on

B so we may assume Lat ftti:)CLat B{k) for k = l, • • • , n. Let

3TÍ £Lat a("+1) ; if 3TI does not meet one of the coordinate spaces then,

by Lemma 3, we have 311ELat B(n+1). Now suppose SIX meets each

coordinate space of 3C(B+1). As in [4, p. 689], for 1 =¿ = « + 1, let 3TÏ,-

be the subspace of 3C consisting of all vectors x such that 3TC contains

an element all of whose entries are zero except the ith which is x.

Then each 3TCt£Lat a and 31 = H£a 3TC, is the smallest of these sub-

spaces. Let P be the projection on 31, Q = P<-n+1), â=P±aP-L, 3C

= 3C©31 = P±X, B = PLBP^. Then Lat â<»CLat B™ for l^k^n.

Also <2-L3H£Lat â("+1) and <2-L3E fails to meet one of the coordinate

spaces of ¡JC("+1). Since, by (d), ft satisfies condition ß, we have that

<2J-3H£Lat -B(n+1) by Lemma 3. It follows that 3H£Lat 5<B+1>. This

completes the proof of Theorem B.
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