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A TOPOLOGICAL CHARACTERIZATION OF THE
DILATION IN £»

L. S. HUSCH1

Abstract. A topological characterization is given to determine

whether a homeomorphism of Euclidean «-space, n¿¿ 4, 5, is topo-

logically equivalent to the dilation *—>J.r.

B. v. Kerékjártó [ó] and T. Homma and S. Kinoshita [4] have

given topological characterizations of the dilations in 2-dimensional

and 3-dimensional Euclidean space, E2 and E3, respectively.

Theorem. Let h be an orientation-preserving homeomorphism of En

onto itself, re 5^4, 5; let h' be the unique extension to the n-sphere, Sn

= EnKJ { oo J, and let dbe a metric for 5". The following are equivalent :

(1) h is topologically equivalent to the dilation x—»f x.

(2) h' is regular or has equicontinuous powers for each xESn

— {O, oo ] but not at 0 or oo ;—i.e. for each e>0 there exists ô>0 such

that whenever d(x, y)<h, d(h'm(x), h'm(y)) <efor every integer m.

(3) For all x, lim,_+00 ¥(x) =0 and for allxy^O, limi^-«, h\x) = oo.

(4) For each compact subset CEE", lim¿_+00 h'(C) =0 and for each

compact subset CinEn— {o}, lim,-,-« h'(C) = oo.

It is clear that (1) implies each of the remaining three conditions.

The last three conditions are known to be equivalent [7, p. 223].

Suppose re ̂ 6. Let G be the group of automorphisms of En generated

by h. Note that (2) implies that h(0) =0. Hence we can regard G as a

group of automorphisms of U = En—{o}. Let p\U^>U/G be the

natural projection onto the orbit space. It follows from (4) and [8],

that p is a covering projection and G is the group of covering trans-

formations. Hence U/G is a closed connected w-manifold.

We wish to show that U/G is homeomorphic to S1XSn~1. By [9],

U/G has the homotopy type of a finite complex. Hence by [3, p. 298],

the homotopy classes of maps of U/G into Sl are in a 1-1 correspon-

dence with Hl(U/G) = integers. In particular, there exists/: U/G—+S1

which is essential. Suppose that the induced map f*:irx(U/G)—>TTx(S1)
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is not onto. Let g:S1-^>S1 be the covering space corresponding to

U(iri(U/G)). By [3, p. 257], there exists/': U/G-+S1 such that gf'=f
and hence fi'.irAU/G)—>tti(S1) is onto and hence an isomorphism.

Therefore, let us assume that /* is an isomorphism. Note that the

infinite cyclic covering of U/G corresponding to/* is U, which has the

homotopy type of S"-1. Recall that the Whitehead group of the

integers is 0 [2]. Hence/can be homotoped to a fibration by [10, p.

11] (although Theorem 4.1 of [lo] is stated in the differential

category, it is also valid in the topological category; see [10, p. 2])

with fibre which is a manifold of the homotopy type of 5n_1 and

hence is S"-1 [l]. Since U/G is orientable, U/G is homeomorphic to

S^^ycS"-1 since an orientation-preserving homeomorphism of 5"_1 is

isotopic to the identity [5].

Consider p~A{x} XS""1) for some xES1. Since p:p-l(\x\ X-S"-1)

—>{x} XS"-1 is a covering projection, it follows that ^"'({x} X5"_1)

is a countable collection of disjoint (n — l)-spheres Sc such that p\ S,

is a homeomorphism for each Sa. Note that h(S„)r\Sa = 0. We

proceed now as in [4] to complete the proof; we include the proof for

completeness.

Let St denote the sphere in £n with center at 0 and radius /. Let

ß:S"-lX(0, »)—>£»— {o} be a homeomorphism such that

ß(Sn~1x{t})=St and ß({x}x(0, <*>)) is a straight line in En.

There is a homeomorphism y of En such that 7(0) =0, y(S„) =S2,

and y(h(S„))=Si. Define 5:5"-1^5"-1 by ß^yhy-^x, 2) = (ô(x), 1).

Since ô is orientation-preserving, it follows from [5] that there is an

isotopy ôt:Sn-1-^Sn-\ 0 = igl,such that 5o = 5 and ôi = identity.

Define Fo^S'-'X [l, 2])-»£» by F0(ß(x, l+t)) =ß(5t(x), í+t).
Extend F0 to F, a homeomorphism of En, by F(0) =0 and F(ß(x, r))

= y-lh"yFo(ß(x, 2"r)) where q is the unique integer such that \<2qr

= 2. One easily sees that F~lyhy-lF(ß(x,r)) =ß(x, %r).
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