A MODEL OF EUCLIDEAN 2-SPACE

M. S. KRISHNA SASTRY1

ABSTRACT. In this paper a model of Euclidean 2-space, called the spin model, is introduced. To each complex-valued function f defined in an open subset of the complex plane is associated a function \tilde{f} mapping an open subset of the spin model space into the two-dimensional real vector space of two-rowed real column matrices. Cauchy's theorem and Cauchy's integral formula for an analytic function f are written as theorems involving the function \tilde{f} .

- 1. Introduction. The purpose of the present note is to introduce a model of Euclidean 2-space, which we will call 'The spin model of Euclidean 2-space,' and to rewrite Cauchy's theorem and Cauchy integral formula as results concerning a function from a subset of the spin model of Euclidean 2-space into a two-dimensional real vector space. These results have suggested a method of defining a concept of analyticity for functions from a nonempty open subset of the spin model of Euclidean 3-space [1] into a two-dimensional complex vector space and also the forms of the analogs of Cauchy's theorem and Cauchy integral formula in this set up. In a subsequent paper we will define this concept of analyticity and show that these functions do have some properties similar to the properties of (ordinary) analytic functions.
- 2. Let E_2 denote the abstract two-dimensional Euclidean space. We identify E_2 with two-rowed real column vectors. The scalar product in E_2 , denoted (\cdot, \cdot) , is the usual one, namely: if $x = \binom{x_1}{x_2}$ and $y = \binom{y_1}{y_1}$ are any two elements of E_2 then $(x, y) = x_1y_1 + x_2y_2$.

By \mathfrak{E}_2 we denote the set of all symmetric linear transformations of E_2 into itself of trace zero. Relative to an orthonormal (o.n.) basis in E_2 each element $T \in E_2$ has a matrix representation:

$$T \leftrightarrow \begin{pmatrix} x_2 & x_1 \\ x_1 & -x_2 \end{pmatrix}$$
 for some $x_1, x_2 \in \mathbb{R}$.

Received by the editors February 7, 1969.

AMS 1970 subject classifications. Primary 30-XX, 30A92, 30A96; Secondary 30A96.

Key words and phrases. Spin model of Euclidean 2-space, Fréchet differentiable, Cauchy-Riemann operator.

¹ These results have appeared in the author's Ph.D. thesis submitted to the University of Rochester, Rochester, New York under the direction of Professor W. F. Eberlein.

Let

$$\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \tau_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then $T = x_1\tau_1 + x_2\tau_2$ and clearly $\{\tau_1, \tau_2\}$ is a basis over **R** for \mathfrak{E}_2 . Thus \mathfrak{E}_2 is a two-dimensional real vector space.

Let $A \in \mathfrak{C}_2$. Then by properly choosing an o.n. basis in E_2 we can let

$$A \leftrightarrow \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$$

for some $a \in \mathbb{R}$.

Hence $A^2 = a^2I$, where I is the 2×2 identity matrix. From this it immediately follows that if A, $B \in \mathfrak{E}_2$ then AB + BA = kI, for some $k \in \mathbb{R}$.

DEFINITION. Let A, $B \in \mathfrak{C}_2$. Then the scalar product of A and B, denoted $A \cdot B$, is defined by $AB + BA = 2(A \cdot B)I$.

It can be easily verified that this definition satisfies all the requirements for a scalar product and that it is nondegenerate.

Thus \mathfrak{E}_2 with this scalar product is a two-dimensional Euclidean space and we call \mathfrak{E}_2 , following Eberlein [1], the spin model of Euclidean 2-space.

3. Let $\{\rho_1, \rho_2\}$ be an o.n. basis for \mathfrak{E}_2 and let f be a smooth mapping from an open subset of \mathfrak{E}_2 into E_2 , where we are endowing \mathfrak{E}_2 with its natural topology. For k=1, 2, let

$$\frac{\partial f}{\partial x_k} = \lim_{h \to 0} \frac{f(x + h \rho_k) - f(x)}{h} \equiv \partial_k f.$$

Definition. $\nabla = \rho_1 \partial_1 + \rho_2 \partial_2$.

We observe that ∇ can act on smooth functions from open subsets of \mathfrak{E}_2 into E_2 —e.g. if f is as above then

$$\nabla f = \rho_1 \partial_1 f + \rho_2 \partial_2 f.$$

The proof that the definition of ∇ is independent of the choice of the o.n. basis in \mathfrak{E}_2 is similar to the corresponding result in [1].

If we choose $\{\tau_1, \tau_2\}$ as an o.n. basis for \mathfrak{E}_2 we can write ∇ as a matrix operator, namely

$$\nabla = \begin{pmatrix} \partial/\partial x_2 & \partial/\partial x_1 \\ \partial/\partial x_1 & -\partial/\partial x_2 \end{pmatrix},$$

and this is precisely the Cauchy-Riemann operator considered in [2].

4. **Definition.** Let E and F be finite-dimensional vector spaces over \mathbb{R} and let \mathfrak{E} and F have their natural topologies. Let S be a nonempty open subset of E. Let $f: S \rightarrow F$. f is said to be Fréchet differentiable at $x \in S$ iff there exists a linear transformation $f'(x): E \rightarrow F$ such that

$$f(x + y) = f(x) + f'(x)y + ||y||\delta(x, y),$$

where $\delta(x, y) \rightarrow 0$ as $y \rightarrow 0$. f is Fréchet differentiable in S if f is Fréchet differentiable at each point of S.

For each subset D of \mathbf{C} (= the set of complex numbers) let

$$\tilde{D} = \{x_1\tau_1 + x_2\tau_2 : (x_1, x_2) \in D\}.$$

Then $\tilde{D} \subset E_2$ and D and \tilde{D} are homeomorphic.

Let $f:D(\subset \mathbb{C}) \to \mathbb{C}$, with

$$f((x_1, x_2)) = u(x_1, x_2) + iv(x_1, x_2) \qquad (i = \sqrt{(-1)}).$$

Then we let $\tilde{f}: \tilde{D} \rightarrow E_2$ with

$$\bar{f}(x_1\tau_1+x_2\tau_2) = \binom{u(x_1,x_2)}{v(x_1,x_2)}.$$

Let f and D be as above and suppose D is open. We know that (see pp. 55-59 of [3] and in particular §6.4 on p. 59) f is analytic in D iff the mapping $(x_1, x_2) \rightarrow (u, v)$ is Fréchet differentiable in D and the partial derivatives of u and v satisfy the Cauchy-Riemann equations. Observing that \tilde{f} belongs to the null space of ∇ iff u and v satisfy the Cauchy-Riemann equations, we conclude that f is analytic in D iff \tilde{f} is Fréchet differentiable in \tilde{D} and $\nabla \tilde{f} = 0$ in \tilde{D} .

Hence it appears that some of the results concerning an analytic function f can be formulated equivalently in terms of the function \tilde{f} .

The rest of the paper is devoted to rewriting Cauchy's theorem and Cauchy integral formula as theorems concerning functions mapping subsets of \mathfrak{E}_2 into E_2 .

We conclude this section with a couple of definitions.

DEFINITION. Let \tilde{f} be a continuous map from an open subset \tilde{D} of \mathfrak{E}_2 into E_2 . Let μ be a Borel measure on \mathfrak{E}_2 . If E is a bounded subset of \tilde{D} then

$$\int_{E} \tilde{f} d\mu \, = \, egin{pmatrix} \int_{E} u d\mu \ \int_{E} v d\mu \end{pmatrix} \, .$$

DEFINITION. Let $n: \mathfrak{C}_2 \to \mathfrak{C}_2$ and let $\tilde{f}: \tilde{D}$ ($\subset \mathfrak{C}_2$) $\to E_2$. Then $n\tilde{f}: \tilde{D} \to E_2$ is defined by

$$(n\tilde{f})(x),=n(x)\tilde{f}(x) \qquad (x\in\tilde{D})$$

where the multiplication on the right side is the usual matrix multiplication.

5. Let $(x_1, x_2) = z \in \mathbb{C}$, where x_1, x_2 are real numbers. We define

$$z_m, = \begin{pmatrix} x_2 & x_1 \\ x_1 & -x_2 \end{pmatrix}, \qquad z_c = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \qquad z^{\perp} = (-x_2, x_1).$$

Notice that $z^{\perp} = iz$, where $i^2 = -1$. It is easily verified that if $z_1, z_2 \in \mathbb{C}$, then

$$(*) \qquad (\overline{z_1}\overline{z_2})_c = (\overline{z_1})_m(z_2)_c,$$

where the multiplication on the left is the multiplication of two complex numbers, the multiplication on the right is the matrix multiplication and \bar{z} denotes the complex conjugate of z.

Cauchy's theorem states that if f is analytic in a simply connected region $D \subset C$ and if Γ is a simple closed curve in D then

$$\int_{\Gamma} f(z)dz = 0 \quad \text{i.e.} \quad \int_{\Gamma} f(z) \frac{dz}{ds} ds = 0,$$

where ds denotes the elemental arc length. Hence the conclusion of Cauchy's theorem can be stated equivalently as

$$\int_{\Gamma} (\overline{dz/ds}) f(z) ds = 0.$$

Hence, on identifying D and \tilde{D} and using (*) we can write the conclusion of Cauchy's theorem in the equivalent form

$$\int_{\Gamma} \left(-\left(\frac{dz}{ds}\right)^{\perp} \right)_{m} \tilde{f}(z) ds = 0.$$

Since dz/ds is the unit tangent vector at z to Γ , $-(dz/ds)^{\perp}$ will be the outward unit normal vector at z to Γ . Thus Cauchy's theorem can be restated as follows:

Let D be a simply connected region in C and let Γ be a simple closed curve in D. Let f be analytic in D. Then

$$\int_{\Gamma} (n\tilde{f})(z)ds = 0,$$

where n denotes the outward unit normal vector at z to Γ and where we identified D and \tilde{D} .

DEFINITION. Let $p \in \mathfrak{C}_2$. We define $g(\cdot, p) : \mathfrak{C}_2 - \{p\} \to \mathfrak{C}_2$ by $g(x, p) = \text{grad } (-\log (1/r))$, where 'grad' denotes gradient and $r = \sqrt{((x-p)\cdot(x-p))}$. If, relative to an o.n. basis in \mathfrak{C}_2 , $x = (x_1, x_2)$ and $p = (p_1, p_2)$, then

$$g(x, p) = r^{-2}(x_1 - p_1, x_2 - p_2).$$

Cauchy integral formula states that if Γ is a simple closed curve in a region D of analyticity of a function f and if p is a point in the interior of Γ then

$$f(p) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - p} dz.$$

It can easily be shown that the above result is equivalent to

$$\tilde{f}(p) = \frac{1}{2\pi} \int_{\Gamma} (g(z, p))_m(n\tilde{f})(z) ds,$$

where, again, we identify D and \tilde{D} and n is the outward unit normal vector at z to Γ .

We wish to point out that the expression $-\log(1/r)$ which appeared above must be interpreted as the fundamental solution of the two-dimensional Laplace equation. This interpretation will suggest the form of the analog of Cauchy integral formula for functions mapping subsets of the spin model of Euclidean 3-space into a two-dimensional complex vector space.

REFERENCES

- 1. W. F. Eberlein, The spin model of Euclidean 3-space, Amer. Math. Monthly 69 (1962), 587-598.
 - 2. —, Cauchy-Riemann operator, Amer. J. Phys. 35 (1967), 53.
- 3. S. Saks and A. Zygmund, Analytic functions, 2nd ed., Monografie Mat., Tom 28, PWN, Warsaw, 1965. MR 31 #4889.

OHIO UNIVERSITY, ATHENS, OHIO 45701