
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 28, Number 2, May 1971

PARTITION THEOREMS FOR EULER PAIRS

M. V. SUBBARAO

Abstract. This paper generalizes and extends the recent results

of George Andrews on Euler pairs. If Si and S^ are nonempty sets of

natural numbers, we define (Si, St) to be an Euler pair of order r

whenever gr(Si; n) =p(Si\ n) for all natural numbers n, where

îr(Si; n) denotes the number of partitions of n into parts taken

from Si, no part repeated more than r — 1 times (r> 1), and p(Si\ n)

the number of partitions of n into parts taken from Sï. Using a

method different from Andrews', we characterize all such pairs,

and consider various applications as well as an extension to vector

partitions.

1. Introduction. Throughout this note, N denotes the set of all

natural numbers, n an arbitrary natural number, r an integer > 1 ;

Si (i = 1, 2) nonempty subsets of N; p(S¡; n) the number of partitions

of n into parts taken from 5<; and qASi-, n) the number of partitions

of n into parts taken from Si, no part repeated more than (r — 1) times

at most in any one partition. We write qASi", n) = 2(5,-; n).

If qiSi; n)=piS2; n), George Andrews [l] called (Si, S2) an Euler

pair, after Euler who gave the (probably first) pair (see, for example,

[5, p. 277]):

(1.1) Si= N;       S2= {nEN\n=i    (mod 2)}.

Two other examples of such pairs:

Si" {nEN\ n féO    (mod 3)};
(12)

S2 = {nEN\ » = 1,5    (modo)}

and

Sx = {nEN\n = 2, 4, 5    (mod 6)};

S2= {nEN\n = 2,5, U    (mod 12)}

are due, respectively to I. J. Schur [6, p. 495]) and H. Göllnitz

[4, p. 175]. Recently, George Andrews [l, Theorem I], characterized

all such pairs by proving the curious (though not unexpected) result:

(«Si, Si) is an Euler pair if and only if
(1.4)

2SiÇZSi   and   S2 = Si - 2Si.
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(As usual, for any kEN, we define kSi= {kn\ nESi}  and Si — S2

= {neSi\n$S2}.)
As Andrews remarked, the uniqueness of the binary representation

of natural numbers is equivalent to the statement that, with

(1.5) Si= {i,2»\nEN};       S2 = Si - 2Si = {l};

(Si, S2) is an Euler pair.

This naturally leads us to consider what analogous interpretation

could be given for the uniqueness of representation of natural numbers

n to any integral base r > 1 :

m

n = }£ a»rS        diEN,    0 ^ at < r    (i = 0, 1, • • ■ , m),    am > 0.
i-O

•■/■.,

It is clear that this is equivalent to the property that

(1.6) qT(Si; n) = p(S2; n)

with

(1.7) Si* {l,f|»£ÍV};       S2 = Sx-rSx= {1¡.

This naturally suggests the following

(1.8) Definition. We say that (Si, S2) is an Euler pair of order r

whenever (1.6) holds.

The purpose of this note is to characterize all such pairs and pro-

vide some examples. Towards the end, we briefly consider the ex-

tension of the results to vector partitions.

2. A characterization of Euler pairs. Define qr(Si, 0) =p(Sit 0) = 1.

Throughout what follows, it is assumed that \x\ <1. We have

(2.1)

X qr(Si; n)x" = H (1 + x° + ■ ■ ■ + s""1'«)
»=0 oSSi

= n (i - *™)(i - x°)~u,
aeSi

(2.2) ¿ p(S2; n)*» =  H (1 — *V.
n-0 6SS2

Since the series and products involved are absolutely convergent for

| x\ < 1, all the processes in the sequel involving them are valid.

We see at once that (Si, S2) is an Euler pair of order r if and only if

(2.3)        n (i - *r°)(i - x*)-1 = n (i - a**)-1;
oes! f>es2
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or equivalently,

(2.4)      n (i - xra) = n (i - **) n o - «*)_i-
oESi oEÄ! f>ESs

These relations are useful for obtaining new Euler pairs of various

orders. Thus we have the following

(2.5) Example. Let

«Si={«GA|n=l     (mod 2)};

S2 = {nE N\ n m + 1    (mod 6)};

then (Si, S2) is an Euler pair of order 3.

While Andrews' main theorem [l, Theorem I] deals only with the

case r = 2, by using arguments similar to his, we obtain the following

generalization of his theorem.

(2.6) Theorem. (Si, SO is an Euler pair of order r if and only if

r Si Ç Si and S2 = Si — rSi.

We shall however prove the theorem making use of the following

approach which is not only interesting in itself, but also yields some

other results as well. For this reason, we develop it a little beyond our

present needs.

Suppose fix), g(x) and h(x) are (or can be expressed as) power

series which are absolutely convergent for |x| <1, and that /(0)

= g(0) =A(0) = 1, so that the same holds for their reciprocals. We

write/(x)=^(x) to mean that the coefficients of like powers of x on

both the sides are equal. Clearly,

(2.7) fix) = gix) <=>/(*)*(*) ■ gix)Kx).

In particular,

(2.8) /(*) - gix) ^ (/(*))-! = ig(x))-K

For later use, we note the following results. Suppose an, bn, c„

(« = 1, 2, 3, • • • ) are increasing sequences of natural numbers, and

sn, In, ua in=l, 2, • ■ • ) are any sequences of natural numbers. Then

u (1   - X«»)-«» =  u (1   - S6")"'" <=> Ö» = On', Sn =  L
n=l

in =

00 00

<=* ix<i — x-»)«» =. n (1—^n)tn-

n=l n—1

<2.9) («=1,2,
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¡I (1 - Xa-)'1 II (1 - ^")_1 »11(1- X°»)~l

(2.10)
CO CO 00

^ n (i - Xa")-1 m n (i - **»> n u - ^")_i-
n=l n=l n=l

Proof. We shall prove the "=* implication" in the first part of

(2.9), the reverse implication being trivial. Suppose that ax^-bx. We

shall then assume (as we may) that ax < bx. Using the relation

CO CO

(2.11) iK1 - xa")-a" - n (i - x6»)-'«
n=l n=l

and comparing coefficients of xai on both sides, we obtain the absurd

result that Siai = 0. Hence ai = bi. Again comparing the coefficients

of x"1 on both sides of (2.11) we get si = ti. We shall now use (2.7)

and remove the factor (1 — x"1)-'1 from both sides of (2.11) and obtain

CO CO

n (i — xa")-e« = u (i — xbn)~t\
71=2 71 = 2

Repeating the above argument, we get successively

an = bn; Sn = tn     (n = 2, 3, • • • ).

Note that the second part of (2.9) follows from (2.7). As corollaries

to (2.9) we get :

(2.12) If p(Si; n) =p(Si-,n) for all nEN, then S, = S2.
Proof. In the first part of (2.9), take ¿„ = ¿„=1, where Si

= {an\nEN}, S2= {bn\nEN}. (The result (2.10) is the lemma in

Andrews [l,p.499].)

To state the next corollary, suppose E(Sí; n) denotes the excess of

the number of partitions of n into an even number of distinct parts

over those into an odd number of distinct parts, the parts being taken

from the set S¡. Then

(2.13) UE(Sx;n)=E(S2;n) for all nEN, then Sx = S2.
This follows from the second part of (2.9) on taking s„ = tn = l

(»=1,2, • • •)•
Actually, we can generalize (2.9) in many ways. For example,

ij (i — xu"a»)(i — xa»)-s" = n (i — xu'bn)(\ — ir6»)-'»

tn

(n= 1, 2, •••)•

(2.14)    -1
v11? Q>n 0n) Sn ln
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(As stated previously, («„) is any sequence of natural numbers.) The

proof of this is similar to the one given before for the first part of

(2.10). As a consequence of (2.14), we have, for example, the follow-

ing result (whose limiting case as r—»°° is (2.12)).

(2.15) If qASi;n) =2r(S2; n) for all nEN, then Si = S2.
This is obtained from  (2.13) on setting sn = tn = l; un = r (» = 1,

2, •••)•
(2.16) Proof of Theorem (2.6). The "if" part follows because

n (i+x» + x2» + • • • + *•>-«•) = n (i - *™)(i - *")-1
nGSi neSi

=  n (i - s")-1
nSSi—rSi

= n (i - xnri-
»es2

The above proof is analogous to that of Andrews [l] for the case

r = 2. But our proof (to follow) for the "only if" part is different from

his.
We now assume that qASi; n) =piS2; n) for all nEN. Suppose that

rSi — Si is not empty. We then have

u (1 - x")'1 m ¡J (1 +*•-+•-h x«'-1'»)
«SSj nESi

m U (1 - x™)(l - s")-1
neSi

= n a-**) n d-x«)-'.

Hence, recalling (2.10),

na-*")-1 n (i.-**)-*-p n (l-x-)-1.
n£S2 nErS!—Si nESi—rSi

It follows from the first part of (2.9) that every member of rSi — Si is a

member of Si —rSi; but this is absurd since these two sets are mu-

tually exclusive. Hence rSi —Si is empty, and Theorem (2.6) is

proved.

3. Applications. We shall give here some interesting Eulerian pairs

as applications of Theorem (2.6).

(3.1) The following pairs are Eulerian of order r:

(3.1.1) Si={nEN\n = r, r2 (mod r(r+l))};   S2 = Si-rSi.

(3.1.2) Si = {nGA|w = r,r2,r2+r-l (mod r(r + l))};S2 = Si-rSi.

For r = 2, (3.1.2) gives the Göllintz pair described in (1.3).
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(3.2) Let SiQN be such that nESi^rnESi. Let S2
= {nESi\n^0 (mod r)}. Then (Si, S2) is an Euler pair of order r.

The case r = 2 was previously given by Andrews [l ]. In particular,

(3.3) (N, {wEAJ »=á0 (mod r)}) is an Euler pair of order r.

The pair given in (1.1), originally due to Euler, is a special case of

this.

(3.4) Let r + 1 be a prime. Define

Si = {n EN\ n ^0 (modr + 1)},

S2 = {n£\N\njár,r + l (mod r2 + r)}.
.

Then (Si, S2) is an Euler pair of order r. This includes, in particular,

Schur's pair given in (1.2).

As a further application of (3.2) we have

(3.5) Theorem. Let p be a prime of which r is a quadratic residue.

Then the number of partitions of n into quadratic residues (mod p), no

residue occurring more than (r — \) times at the most in any partition,

equals the number of partitions of n into parts which are quadratic

residues of p and are not multiples of r.

(3.6) Example. The number of partitions of n into parts which are

= 1, 3, 4, 5, 9 (mod 11), each part repeated twice at most in any

partition, equals the number of partitions of n into parts which are

= 1,4, 5,14,16, 20, 23, 25, 26, 31 (mod 33).
Similar results can be obtained involving cubic and higher power

residues.

For example, since 1, 5, 8, 12 are cubic residues modulo 13 we have

the following result.

(3.7) ({nEN\n = l, 5, 8, 12 (mod 13)}, {»£^« = 8, 12, 14, 18,
2 7, 31, 34, 38 (mod 39)}) is an Euler pair of order 5.

In the results to follow, x and y represent integers.

(3.8) Theorem. The number of partitions of n into parts which are

expressible in the form x2+2y2 equals the number of partitions of n into

odd parts which are expressible in the form x2 + 2y2.

Proof. This follows from Theorem (2.6) in view of the fact that n

is expressible in the form x2 + 2y2 if and only if 2« is [3, p. 68, prob-

lem 1].

(3.9) Theorem. The number of partitions of n into parts which are

expressible in the form x2+xy+y2, each part repeated at most twice in

any partition, equals the number of partitions of n into parts which are

relatively prime to 3 and expressible in the form x2+xy+y2.
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This follows because n and 3« have the same number of representa-

tions in the form x2-r-xy+y2 [3, p. 68, problem 2].

4. Extension to vector partitions. The main Theorem (2.6) can be

easily extended to vector partitions, that is, partitions of vectors into

parts which are vectors. In fact, Euler's original result for the pair

given in (1.1) has already been extended in this way by M. S. Cheema

[2, Theorem II] as follows:

(4.1) The number of partitions of (wi, n2, • • • , n,) into vectors

with at least one component odd is equal to the number of partitions

of (»i, «2, • ■ • , nt) into distinct parts. The result also holds if the

parts are required to have nonzero components.

Our extension of Theorem (2.6) to vectors can be stated thus:

(4.2) The number of partitions of the vector (wi, ■ ■ ■ , n,) into

parts in which all components belong to Si, no part (vector) repeating

more than r — \ times, equals the number of partitions of the vector

(«i, •••,«,) into parts in which all components belong to S2 if and

only if

rSi Ç Si    and   S2 = Si — rSi.

We can further extend the result for the case when the itW com-

ponent of each part (vector) is required to belong to a set St- which

may be different for different values of i.
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