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GLOBAL DIMENSION OF TRIANGULAR ORDERS

RICHARD B. TARSY

Abstract. The triangular orders of finite global dimension in

«X» matrices over the quotient field of a DVR are found and a

bound is given for their dimensions.

1. Introduction. Recently there have appeared examples ([2], [7])

of orders of arbitrarily high finite global dimension in matrix algebras

over the quotient field of a DVR, showing that the previously sus-

pected bound of one is exceeded. These examples are of orders of a

special type which we call triangular. In this note we find all the tri-

angular orders of finite global dimension in nXn matrices over the

quotient field of a DVR and give a bound for their dimensions. We

also observe that the finite finitistic global dimensions of tiled orders

in «X« matrices must be bounded.

2. Definitions, notation, and remarks. We shall be concerned with

orders in «X« matrices, Mn(K), over the quotient field, K, of a

DVR, R, with maximal ideal (t). By a tiled order we shall mean an

order which can be represented as ((ta(iJ))), i.e. the set of all matrices

in Mn(K) whose i, jth entry is an element of the ideal (ta(-iJ)) of R,

a(i, j) an integer. That these are orders implies that a(i, i)=0. A

triangular order is a tiled order with a(i,j) =0 for i>j.

The condition that ((ta(iJ))) be a triangular order is simply that

aii, j) =0 if i^j, aii, j) 3ía(¿, j) if is^k, a(i, j) ^a(i, k) if j^k, and

a(i, k) +a(k,j) ^a(i,j) if i&j&k. It is easily seen then that there are

positive integers nti, • • • , mr with ^w; = w such that a(i, j) is

constant as i runs from w* to j»*+i —1 and/ runs from mp to mp+i — i,

k, p = \,. • • • , r. Thus, by using block notation, we may without loss

of generality assume that a(i, i + l) >0. We shall suppress further

mention of the block convention, assuming all blocks to be 1 X1 for

the sake of simplicity. Any changes necessary for the case of larger

blocks will be clear.

If P is an order J(P) will denote the Jacobson radical of P. If M

is a left (right) P module ldP(M)(rdp(M)) will denote the left (right)

projective dimension of M. GD(P) will denote the global dimension

of P, the same on left and right since P is left and right Noetherian.

Recall also that there is no difference between the projective and

weak dimensions of finitely generated P modules.
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We remark in passing that using the known behavior of global

dimension with respect to localization and completion all that fol-

lows can easily be generalized to the appropriate kinds of tiled orders

in central simple algebras over the quotient field of a Dedekind do-

main.

3. Main theorem.

Theorem \.LetP = ((ta(-i->))) be a triangular order in Mn(K). GD(F)

is finite if and only if a(i, j) ^j — i for i<j. In this case GD(F) ^2

+2(n-3) if ra^3 and GD(P) gre-1 if n^3.

Remarks. The condition a(i, j) ^j — i may be interpreted simply

asa(i,j)— a(i,j — 1) ¿1 and a(i,j) —a(i — l,j) at.

The proof of the theorem depends on several preliminary results

which follow.

Lemma 1. Let S be a left Noetherian ring and I a two-sided ideal in

J(S). If M is a finitely generated left S module such that Torp(S/I, M)

= 0 (all ¿>0) then \ds(M) =lds/I(M/IM).

Proof. Lemma 1' in [ó].

Lemma 2. If S is a left Noetherian ring and I is a two-sided ideal in

J(S) then left GD(S) g weak rds(S/I) +left GD(S/I).

Proof. Theorem 1 in [ö].

Lemma 3. Suppose S is a ring and I is a left projective two-sided ideal

with Im = Im+1. Then for any S/I module M \dS/i(M) g \ds(M) +2m-2.

Thus if\GL>iS) is finite so is 1GD(5/Z).

Proof. Theorem 1 in [l].

Lemma 4. Suppose P is an order in M„iK) and I is a two-sided ideal

of P. There exists an m such that Im = Im+1 if and only if I(£JiP).

Proof. If there exists such an m then certainly I(\_JiP) for J(F)r

ElP for a suitable r.

On the other hand if KtJiP) then J(P) $ I+J(P). By Lemma 3.2
of [3] there is an m such that (I+J(P))m = (I+J(P))m+1. Multiplying

out makes it clear that In+J(P) =Im+1+J(P) and the conclusion

follows from Lemma 2.4 of [3].

Let P be an order in Mn(K) and I a left ideal of P that spans

Mn(K) over K. Observe that Hom,(J, P) = {xEMn(K)\lxCP}.

The dual basis lemma for projective modules then yields
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Lemma 5. I is a left projective P module if and only if 1

GHomP(7, P)I.

Proof of Theorem 1. Assume first that GD(P) is finite. The two-

sided ideal I which is P with (ia(11)) =R replaced by (ta{i-2)) is left

projective by Lemma 5. Also since J(P) is just P with the diagonal

entries replaced by (¿)'s, I(£J(P). Thus by Lemma 4 I fulfills the

conditions of Lemma 3, and so GD(P/J) is finite. But P/I

^i?/(/o(1'2)), whence o(l, 2) = 1. Similarly replacing (t<n<n)) by

(¿a(n-i.n)) yields a projective ideal and so a(n — 1, n) = 1. Proceeding as

above, successively replacing (P^-V) by (/o(i'<+1)), i = 2, ■ ■ ■ ,n — 2,

shows that a(i, i + l) = l, *«=1, • ■ • , » — 1. Using induction on/— i,

a(i,j) á aii, i + 1) + aii + 1, /) ^ 1 + j - i - 1 = j - i.

Now suppose a(i, î + 1) =1, i = l, • • • , n — 1. We proceed by induc-

tion assuming «>3, since the cases n^3 are covered in Theorems 7

and 12 of [7]. Let I be the two-sided ideal

-(¿a(l,n))      (¿a(l,n))   .   .   .  /fa(l,n)y

(¿a(2,n))      (¿a(2,n))   .   .   .  (¿0(2,«))

(Í) Q) ■■■ it)

.    R R     ■ ■ ■     it)   .

I is right projective, for the first n — 1 rows of / are each just the last

row of P multiplied by a power of t, and the last row of I is the

(n-l)th row of P. Clearly IEJ(P)- By Lemma 2, GD(P)gl
+GD (P/I). Now P/I^Q/L®R/(t) (ring sum) where Ç is a tri-

angular order in Mn-iiK) and L is the ideal of Q which is I with the

last row and column deleted. We have GD(P/J) =GD(Ç/L), and by

induction GD(Q) ^2+2(w— 4). It remains to compute GD(Q/L),

which may be done by computing Idc/iKQ/L), since Q/L is a finite

dimensional algebra over R/(t) ; GD iQ/L) = 1 +ldQ/L(J(Q/L)).

Note that LEJ(Q) so that J(Q/L) =J(Q)/L. Also L is right pro-
jective and J(Q) is a submodule of the free Q module, Q, from which

it follows by the connecting homomorphism theorem [5, Chapter

5], that Tor^Q/L, J(Q))=0, p>0. By Lemma 1, lde(J(<2)) =
ldQ/L(J(Q)/LJ(Q)). It is known (see, for example [7]) that ld0(7(<2))
= GD(Q)-1.

We have the exact sequence Q^L/LJ(Q)->J(Q)/LJ(Q)^>J(Q)/L

->0.   By direct computation L/LJ(Q)® ■ ■ ■ ®L/LJ(Q)   (n sum-
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mands) is isomorphic to L/tL and again by computation tL=L2.

Thus ldQ/L(L/LJ(Q)) =\dQ/L(L/L*). But Tor^Q/L, L) = 0, ¿>0, so
\dQ/L(L/LJ(Q)) =ldQ(L) ̂ GD(Q) -1. Using the well-known relation
of the projective dimensions of modules in an exact sequence we con-

clude thatld0/i/(Q)/.LgGD(Ç>). Hence, GD(Q/L) gGD(Q)+i and
GD(P)^GD(<2)+2^2+2(«-4)+2=2+2(«-3).

Theorem 2. The number of isomorphism classes of R/(t) algebras

P/tP arising as P runs over tiled orders in Mn(K) is finite.

Proof. Let P = ((ta(-<■>">)) be a tiled order in Mn(K). P is a free R

module with basis ¿a(i,y)e<,y, where eit¡ is the matrix with i, jth entry

equal to one and zeroes elsewhere. The residue classes of these basis

elements of P form a basis of P/tP over R/(t). Multiplying one by

another yields either 0 or another basis element of P/tP. Thus P/tP

has a basis with algebra structure constants consisting only of 0's and

l's. Since there are only finitely many possibilities for such an array

there are clearly only finitely many isomorphism classes of P/tP's

arising.

Let 5 be a ring. Denote by lfGD(5) the supremum of the projective

dimensions of finitely generated left 5 modules of finite projective

dimension.

Corollary 1. As P runs over tiled orders in Mn(K) the finite

\iGD(P)'sare bounded and, hence, so are the finite GD(?)'j.

Proof. Standard change of rings results (for example Theorems C

and E of Chapter 4 of [4]) show that lfGD(P) =lfGD(F/iF) + l and
the result follows from Theorem 2.
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