ON BURNSIDE'S LEMMA1

MARCEL HERZOG

ABSTRACT. Burnside's lemma on characters of finite groups is generalized, leading to the following theorem: if G is a simple group of order divisible by exactly 3 primes, and if one of the Sylow subgroups of G is cyclic, then for each Sylow subgroup P of G we have $C_G(P) = Z(P)$.

I. **Introduction.** Let G be a finite group and let X be an ordinary irreducible character of G of degree x. The basic step in the proof of Burnside's p^aq^b -theorem is the following:

LEMMA 1 [2, 18.1]. Let C be a conjugate class of G and suppose that (x, |C|) = 1. Then for $g \in C$ either X(g) = 0 or |X(g)| = x.

In this paper we apply Lemma 1, together with the following:

LEMMA 2. Let $g \in G$. Then:

- (a) If X(g) = 0 and m is an integer prime to o(g) then $X(g^m) = 0$.
- (b) If X(g) = 0 and o(g) = p a prime, then $p \mid x$.

In order to prove:

THEOREM. Let G be a simple group and suppose that $o(G) = p^a r^b q^c$, where p, r and q are primes. If a Sylow p-subgroup P of G is cyclic, then $C_G(H) = Z(H)$ for each Sylow subgroup H of G.

II. Generalizations of Burnside's lemma. First we mention:

LEMMA 3. Let S be a normal subset of G such that X(s) = a for all $s \in S$, and suppose that (x, |S|) = 1. Then either a = 0 or |a| = x.

PROOF. The proof follows exactly the lines of the proof of Lemma 1 in [2, 18.1]. The only thing to notice is that |S|a/x is an algebraic integer, since that is the case for |C|a/x, where C is any of the conjugate classes contained in S.

In order to prove the Theorem we need the following

PROPOSITION. Let $Z(G) = \{1\}$ and let H be a Hall π -subgroup of G.

Received by the editors July 16, 1970.

AMS 1969 subject classifications. Primary 2029, 2080.

Key words and phrases. Finite group, ordinary irreducible character, simple group, conjugate class.

¹ This paper was written while the author was visiting the Department of Mathematics, University of Illinois, Urbana, Illinois.

Moreover, suppose that X is a faithful character of G of degree x > 1. Then $x \mid H \mid implies C_G(H) = Z(H)$.

PROOF OF LEMMA 2 AND OF THE PROPOSITION. Since (o(g), m) = 1, there exists an automorphism σ of $\langle g \rangle$ such that $g^{\sigma} = g^{m}$. It follows that $X(g^{m}) = X^{\sigma}(g)$ is an algebraic conjugate of X(g), hence $X(g^{m}) = 0$. If o(g) = p, then $X(g^{i}) = 0$ for $i = 1, \dots, p-1$ and consequently $p \mid x$.

We proceed with a proof of the Proposition. It suffices to show that $C_G(H)$ is a π -subgroup of G. Suppose that $g \in C_G(H)$ is a π' -element of prime order p. Then $H \subset C_G(g)$ and consequently (x, |C|) = 1, where C is the conjugate class of G containing g. It follows then by Lemma 1 that either X(g) = 0 or |X(g)| = x. Since $p \nmid x$, $X(g) \neq 0$ by Lemma 2. If |X(g)| = x, then, by [2, 6.7], $g \in Z(G)$ in contradiction to our assumptions. Thus $C_G(H)$ is a π -group and $C_G(H) = Z(H)$.

III. **Proof of the Theorem.** In [1] Brauer has shown that $C_G(P) = P$. Let R and Q be an r-Sylow and a q-Sylow subgroup of G, respectively. It remains to be shown that $C_G(R) = Z(R)$ and $C_G(Q) = Z(Q)$.

Let [N(P):P] = e; then, since G is simple, e > 1 and it follows by Proposition 2.1 and Corollary 2.1 of [3] that the principal p-block of G contains e+1 ordinary irreducible characters $X_0 = 1_G$, X_1, \dots, X_e of degrees $x_0 = 1, x_1, \dots, x_e$ respectively, such that

$$1 + \sum_{i=1}^{e} \epsilon_i x_i = 0$$

where $\epsilon_i = \pm 1$, $i = 1, \dots, e$ and $(x_i, p) = 1$ for $i = 1, \dots, e$. Consequently $x_i = r^{b_i}q^{e_i}$ and by (1) there exist k and j, $1 \le k$, $j \le e$, such that

$$x_j = r^{b_j} > 1, \qquad x_k = q^{c_k} > 1.$$

Our Proposition then implies that $C_G(R) = Z(R)$ and $C_G(Q) = Z(Q)$, thus completing the proof.

REFERENCES

- 1. R. Brauer, On simple groups of order 5·3a·2b, Bull. Amer. Math. Soc. 74 (1968), 900-903. MR 38 #4552.
 - 2. W. Feit, Characters of finite groups, Benjamin, New York, 1967. MR 36 #2715.
- 3. M. Herzog, On finite groups with cyclic Sylow subgroups for all odd primes, Israel J. Math. 6 (1968), 206-216. MR 38 #3349.

Tel-Aviv University, Tel-Aviv, Israel