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AN INEQUALITY FOR COMPLEX LINEAR GROUPS
OF SMALL DEGREE

HARVEY I. BLAU

Abstract. Let G be a finite complex irreducible linear group

of degree less than p — \ for some fixed prime p, whose order is di-

visible by p to the first power only, and which has no normal Sylow

/»-subgroup. An inequality of Brauer, which bounds p by a function

of the number of conjugate classes of ¿»-elements, is improved.

The purpose of this note is to prove

Theorem 1. Let G be a finite group with the following properties : for

some fixed prime p, a Sylow p-subgroup P of G has order p and is not

normal in G; the number t of conjugate classes of p-elements of G is at

least 3 ; and G has a faithful irreducible complex character x of degree

d<p-\. Thenp^t2-3t + L

This improves Brauer's inequality p^t3 —1 + 1 [2]. Hayden's re-

sult [6] that ¿^6 follows from Theorem 1 after the case t = 5, p = ll

is handled. All groups with t^2 and which satisfy the other hypo-

theses of Theorem 1 are known [8]. Apparently, no groups are known

which satisfy these hypotheses with 6^t<(p —1)/2.

The proof is basically a series of observations on the methods of

[5]. Note that [5, Theorem l] shows that either t is even or

t=(p-l)/2.
Proof. Assume the hypotheses of Theorem 1. Then d = p — (p — 1)/t

[2]. If p = 7, no such groups exist [3], so we may assume p>7.

Let e = (p-\)/t. If eg2, then t^(p-l)/2, and the theorem fol-

lows trivially for p>7. Assume henceforth e>2.

Let Gi be the normal closure of P in G, and let G2 = G[. Feit's

reduction argument [5, (6.1)] shows that G2 = G2, G2/Z(G2) is simple,

and G2/Z(G2)^PSL2(p). Also, G2 and x| g2 satisfy the hypotheses of

Theorem 1. Since d, and hence /, is the same for both groups, it

suffices to prove the theorem in case G = G2. Then by [5, (2.1)], G

satisfies conditions (*) of [5] and | Z(C7) | | p—e. Thus [5, Theorem 1 ]

implies e is odd and t is even.

For the rest of this paper we use the following notation, in ac-

cordance with [5]: N=m.a(P); Z = Z(G); Bu is a £-block of defect 1
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corresponding to a linear character nu of Z. The exceptional char-

acters in Bu are denoted by xT, l=j = ¿- The sign ô„= +1 as Xj(Fj

= ±e (mod p). 0 is the ring of integers in a p-adic number field, (P is

the maximal ideal of 6, and K = 6/(?. If A is an ©G-module,  X

= A/(PA. A typical indecomposable A A-module is denoted V?M

where l^r^p and 1 ¿« jg j ZJ. \=ah for some integer A, where a is

the linear character of N given by g~lyg =ya<-a\ all gEN, yEP.

The following lemma is an obvious modification of [5, (3.8)]. It is

proved by making the corresponding obvious changes in the proof of

that result.

Lemma 2. Let group J satisfy (*) with t¡¿3, and let M be an Q-free

Qj-module which affords the character £. Suppose that £| z =£(1)tju where

ô„ = l. Let Ç=a-f(3+7 where a= 2^_i hjxf, ß is a character in Bu

which is orthogonal to every \f'\ and y is orthogonal to every character

in Bu. Let h= ^J=i Ay. Then the following hold:

(i) If M is indecomposable and £(l)=e (mod p) or |(l)=e + l

(mod p) then A S:1.

(ii) If M = Wx®Wi where each Wi is indecomposable and ¿(1)

= 2e (mod p) then A^2.

Now let x> as in the statement of Theorem 1, be in the £-block

Bu. x is an exceptional character [5, §2]. Let X be an ©-free ©G-

module which affords x such that A is indecomposable. Then X\N

= Fp_e,„ for some ¡xE{a), and by [4, Lemma 3.7],

(3) (x ® x) \N = ® ¿ vi¿x,u+, ® E vii+u-
*=0 k=e

Since P is a T.I. set, for each O^k^e — 1 there is a unique inde-
2   k

composable i£G-module Wk so that V2k+itU+u is the unique nonpro-

jective indecomposable summand of Wk\ n- Then

e-l

A ® A =   ®*£Wk ®S,

where 5 is projective. There is a subset S* of the integers j with

e^j^p — e — i such that, from (3),

Wk \N = F2*+i,„+u © ¿-i Fi,u+„.
j3ft

Assume 0 is large enough so that, by [5, (3.6)], for each k with

0 ák <e, there is an 0-free ©G-module Mk such that Mk « Wk®Wt-k-x,

and so that there exists an 0-free ©G-module L with L~ W^-d/i-
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Let f be an exceptional character in Bu+U. By [5, (4.1)], Su+U = l,

so that f(l)=e (mod £). Since f(l)?¿p-e, we havef(l)>£. Let F be

a modular constituent of f. Let dimx Y = ap+y, 0<y<p. By an

argument of Rothschild [7], 23 y =e, where the sum is taken over all

modular constituents of f. It follows that there exists some constituent

Y with dim*; Y>p. Then F| n contains at least one protective sum-

mand V^iV+a.

By Lemma 2, for each 0^k<e, the ^-conjugates of £" occur in the

character afforded by Mk with a total multiplicity of at least 2. Thus

Y occurs with multiplicity at least 2 as a constituent of Wk®We_k-i-

Similarly, Y occurs with multiplicity at least 1 as a constituent of

IF(e_i)/2. Thus VP:U+U occurs at least twice in a direct sum decomposi-

tion of iWk®We-k-i) | n, and at least once in a decomposition of

WV-i)/2| n- Hence VPiU+u occurs at least 2(e — l)/2 + l =e times in the

decomposition (3). Since \{a)\ =e, V¡¡iU+u can occur at most t — \

times, and at most i —2 times unless y=p.2ae=n2.

Suppose 7=M2 and e = i —1. X®X is the direct sum of symmetric

and skew summands, and by [l, Lemma 3.3], Wk and We-k-i are both

symmetric summands for k odd, and both skew summands for k even,

since e is odd. V^¡u+U occurs exactly twice as a summand of each

iWk®We-k-i)\ n, and exactly _once in tF(e_i)/2| N. It follows that

Fp,0+U is a skew summand of (A-® A") | N more times than it is a sym-

metric summand. However, [l, Lemma 3.3] also shows that VP:U+U

appears t/2 times as a symmetric summand and it/2) — 1 times as a

skew summand: contradiction.

Thus e^t — 2. Since e is odd and t even, we have e^t — 3. Since

e = (p — \)/t, it follows that p^t2 — 3i + l, and Theorem 1 is proved.

Corollary 4. Assume the hypotheses of Theorem 1. Then

á è p+ (3/2) - ip + 5/4)1'2.

Proof. We know e^(p — l)/e — 3, so e2+3e — (p — 1) ^0. Hence

e^ — 3/2 + (£+5/4)1/2. Since d = p—e, we are done.
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