AN INEQUALITY FOR COMPLEX LINEAR GROUPS OF SMALL DEGREE

HARVEY I. BLAU

ABSTRACT. Let G be a finite complex irreducible linear group of degree less than p-1 for some fixed prime p, whose order is divisible by p to the first power only, and which has no normal Sylow p-subgroup. An inequality of Brauer, which bounds p by a function of the number of conjugate classes of p-elements, is improved.

The purpose of this note is to prove

THEOREM 1. Let G be a finite group with the following properties: for some fixed prime p, a Sylow p-subgroup P of G has order p and is not normal in G; the number t of conjugate classes of p-elements of G is at least 3; and G has a faithful irreducible complex character χ of degree d < p-1. Then $p \le t^2 - 3t + 1$.

This improves Brauer's inequality $p \le t^3 - t + 1$ [2]. Hayden's result [6] that $t \ge 6$ follows from Theorem 1 after the case t = 5, p = 11 is handled. All groups with $t \le 2$ and which satisfy the other hypotheses of Theorem 1 are known [8]. Apparently, no groups are known which satisfy these hypotheses with $6 \le t < (p-1)/2$.

The proof is basically a series of observations on the methods of [5]. Note that [5, Theorem 1] shows that either t is even or t = (p-1)/2.

PROOF. Assume the hypotheses of Theorem 1. Then d = p - (p-1)/t [2]. If p = 7, no such groups exist [3], so we may assume p > 7.

Let e = (p-1)/t. If $e \le 2$, then $t \ge (p-1)/2$, and the theorem follows trivially for p > 7. Assume henceforth e > 2.

Let G_1 be the normal closure of P in G, and let $G_2 = G_1'$. Feit's reduction argument [5, (6.1)] shows that $G_2 = G_2'$, $G_2/\mathbb{Z}(G_2)$ is simple, and $G_2/\mathbb{Z}(G_2) \not\approx PSL_2(p)$. Also, G_2 and $\chi \mid_{G_2}$ satisfy the hypotheses of Theorem 1. Since d, and hence t, is the same for both groups, it suffices to prove the theorem in case $G = G_2$. Then by [5, (2.1)], G satisfies conditions (*) of [5] and $|\mathbb{Z}(G)|$ |p-e. Thus [5, Theorem 1] implies e is odd and t is even.

For the rest of this paper we use the following notation, in accordance with [5]: $N = \mathfrak{N}_G(P)$; $Z = \mathfrak{Z}(G)$; B_u is a p-block of defect 1

Received by the editors May 25, 1970.

AMS 1969 subject classifications. Primary 2025, 2080; Secondary 2075.

Key words and phrases. Faithful irreducible complex representation, complex character, prime order Sylow subgroup, small degree, conjugate class of p-elements.

corresponding to a linear character η^u of Z. The exceptional characters in B_u are denoted by $\chi_j^{(u)}$, $1 \le j \le t$. The sign $\delta_u = \pm 1$ as $\chi_j(1) \equiv \pm e \pmod{p}$. O is the ring of integers in a p-adic number field, O is the maximal ideal of O, and K = 0/O. If X is an OG-module, $\overline{X} = X/OX$. A typical indecomposable KN-module is denoted $V_{r,u}^h$ where $1 \le r \le p$ and $1 \le u \le |Z|$. $\lambda = \alpha^h$ for some integer h, where α is the linear character of N given by $g^{-1}yg = y^{\alpha(g)}$, all $g \in N$, $y \in P$.

The following lemma is an obvious modification of [5, (3.8)]. It is proved by making the corresponding obvious changes in the proof of that result.

LEMMA 2. Let group J satisfy (*) with $t \ge 3$, and let M be an O-free OJ-module which affords the character ξ . Suppose that $\xi \mid_Z = \xi(1)\eta^u$ where $\delta_u = 1$. Let $\xi = \alpha + \beta + \gamma$ where $\alpha = \sum_{j=1}^t h_j \chi_j^{(u)}$, β is a character in B_u which is orthogonal to every $\chi_j^{(u)}$, and γ is orthogonal to every character in B_u . Let $h = \sum_{j=1}^t h_j$. Then the following hold:

- (i) If \overline{M} is indecomposable and $\xi(1) \equiv e \pmod{p}$ or $\xi(1) \equiv e+1 \pmod{p}$ then $h \ge 1$.
- (ii) If $\overline{M} = W_1 \oplus W_2$ where each W_i is indecomposable and $\xi(1) \equiv 2e \pmod{p}$ then $h \ge 2$.

Now let χ , as in the statement of Theorem 1, be in the p-block B_u . χ is an exceptional character [5, §2]. Let X be an 0-free 0G-module which affords χ such that \overline{X} is indecomposable. Then $\overline{X}|_N = V_{p-e,u}^{\mu}$ for some $\mu \in \langle \alpha \rangle$, and by [4, Lemma 3.7],

$$(\overline{X} \otimes \overline{X}) \Big|_{N} = \bigoplus \sum_{k=0}^{e-1} V_{2k+1,u+u}^{\mu^{2}\alpha^{k}} \oplus \sum_{k=e}^{p-e-1} V_{p,u+u}^{\mu^{2}\alpha^{k}}.$$

Since P is a T.I. set, for each $0 \le k \le e-1$ there is a unique indecomposable KG-module W_k so that $V_{2k+1,u+u}^{\mu^2\alpha^k}$ is the unique nonprojective indecomposable summand of $W_k|_N$. Then

$$\overline{X} \otimes \overline{X} = \bigoplus_{k=0}^{e-1} W_k \oplus S,$$

where S is projective. There is a subset S_k of the integers j with $e \le j \le p - e - 1$ such that, from (3),

$$W_k \big|_{\scriptscriptstyle N} = V_{2k+1,u+u}^{\mu^2\alpha^k} \, \oplus \sum_{j \in \mathbb{S}_k} \, V_{p,u+u}^{\mu^2\alpha^j}.$$

Assume 0 is large enough so that, by [5, (3.6)], for each k with $0 \le k < e$, there is an 0-free 0G-module M_k such that $\overline{M}_k \approx W_k \oplus W_{e-k-1}$, and so that there exists an 0-free 0G-module L with $\overline{L} \approx W_{(e-1)/2}$.

Let ζ be an exceptional character in B_{u+u} . By [5, (4.1)], $\delta_{u+u}=1$, so that $\zeta(1) \equiv e \pmod{p}$. Since $\zeta(1) \neq p-e$, we have $\zeta(1) > p$. Let Y be a modular constituent of ζ . Let $\dim_K Y = ap + y$, 0 < y < p. By an argument of Rothschild [7], $\sum y = e$, where the sum is taken over all modular constituents of ζ . It follows that there exists *some* constituent Y with $\dim_K Y > p$. Then $Y|_N$ contains at least one projective summand $V_{p,u+u}^{\gamma}$.

By Lemma 2, for each $0 \le k < e$, the p-conjugates of ζ occur in the character afforded by M_k with a total multiplicity of at least 2. Thus Y occurs with multiplicity at least 2 as a constituent of $W_k \oplus W_{e-k-1}$. Similarly, Y occurs with multiplicity at least 1 as a constituent of $W_{(e-1)/2}$. Thus $V_{p,u+u}^{\gamma}$ occurs at least twice in a direct sum decomposition of $(W_k \oplus W_{e-k-1})|_{N}$, and at least once in a decomposition of $W_{(e-1)/2}|_{N}$. Hence $V_{p,u+u}^{\gamma}$ occurs at least 2(e-1)/2+1=e times in the decomposition (3). Since $|\langle \alpha \rangle| = e$, $V_{p,u+u}^{\gamma}$ can occur at most t-1 times, and at most t-2 times unless $\gamma = \mu^2 \alpha^e = \mu^2$.

Suppose $\gamma = \mu^2$ and e = t - 1. $\overline{X} \otimes \overline{X}$ is the direct sum of symmetric and skew summands, and by [1, Lemma 3.3], W_k and W_{e-k-1} are both symmetric summands for k odd, and both skew summands for k even, since e is odd. $V_{p,u+u}^{\gamma}$ occurs exactly twice as a summand of each $(W_k \oplus W_{e-k-1})|_{N}$, and exactly once in $W_{(e-1)/2}|_{N}$. It follows that $V_{p,u+u}^{\gamma}$ is a skew summand of $(\overline{X} \otimes \overline{X})|_{N}$ more times than it is a symmetric summand. However, [1, Lemma 3.3] also shows that $V_{p,u+u}^{\mu^2}$ appears t/2 times as a symmetric summand and (t/2) - 1 times as a skew summand: contradiction.

Thus $e \le t-2$. Since e is odd and t even, we have $e \le t-3$. Since e = (p-1)/t, it follows that $p \le t^2 - 3t + 1$, and Theorem 1 is proved.

COROLLARY 4. Assume the hypotheses of Theorem 1. Then

$$d \ge p + (3/2) - (p + 5/4)^{1/2}$$
.

PROOF. We know $e \le (p-1)/e - 3$, so $e^2 + 3e - (p-1) \le 0$. Hence $e \le -3/2 + (p+5/4)^{1/2}$. Since d = p - e, we are done.

REFERENCES

- 1. H. I. Blau, Under the degree of some finite linear groups, Northern Illinois University, DeKalb, Ill., 1970 (preprint).
- 2. R. Brauer, Some results on finite groups whose order contains a prime to the first power, Nagoya Math. J. 27 (1966), 381-399. MR 33 #7402.
- 3. ——, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96. MR 34 #5913.
- 4. W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J. 27 (1966), 571-584. MR 33 #7404.

408 H. I. BLAU

- 5. ——, On finite linear groups, J. Algebra 5 (1967), 378-400. MR 34 #7632.
- 6. S. Hayden, On finite linear groups whose order contains a prime larger than the degree, Thesis, Harvard University, Cambridge, Mass., 1963.
- 7. B. Rothschild, Degrees of irreducible modular characters of blocks with cyclic defect groups, Bull. Amer. Math. Soc. 73 (1967), 102-104. MR 34 #4381.
- 8. H. F. Tuan, On groups whose orders contain a prime number to the first power, Ann. of Math. (2) 45 (1944), 110-140. MR 5, 143.

NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115