SEMILATTICE OF BISIMPLE REGULAR SEMIGROUPS

H. R. KRISHNA IYENGAR

ABSTRACT. The main purpose of this paper is to show that a regular semigroup S is a semilattice of bisimple semigroups if and only if it is a band of bisimple semigroups and that this holds if and only if $\mathfrak D$ is a congruence on S. It is also shown that a quasiregular semigroup S which is a rectangular band of bisimple semigroups is itself bisimple.

- In [3, Theorem 4.4] it was shown that a semigroup S is a semilattice of simple semigroups if and only if it is a union of simple semigroups. The purpose of this paper is to obtain corresponding results for a semigroup which is a semilattice of bisimple regular semigroups. Unfortunately, a semilattice of bisimple semigroups need not be a union of bisimple semigroups as illustrated by a simple ω -semigroup constructed by Munn [5]. However, we get some equivalent conditions for such semigroups. In particular we show that a regular semigroup is a semilattice of bisimple semigroups if and only if it is a band of bisimple semigroups.
- 1. Equivalent conditions. In this section we consider a set of equivalent conditions for a semigroup S to be a semilattice of bisimple semigroups. We adopt the terminology and notation of [2].
- LEMMA 1.1. Let S be a semilattice Ω of semigroups S_{α} and let D be a \mathfrak{D} -class of S. Then, either $S_{\alpha} \cap D = \square$ or $D \subseteq S_{\alpha}$.

PROOF. Suppose $S_{\alpha} \cap D \neq \square$. Let $a_{\alpha} \in S_{\alpha} \cap D$. If $b_{\beta} \in S_{\beta}$ and $a_{\alpha} \mathfrak{D} b_{\beta}$, then there exists $c_{\gamma} \in S_{\gamma}$ ($\gamma \in \Omega$) such that $a_{\alpha} \mathfrak{R} c_{\gamma}$ and $c_{\gamma} \mathfrak{L} b_{\beta}$. Also $a_{\alpha} \mathfrak{R} c_{\gamma}$ implies that either $a_{\alpha} = c_{\gamma}$ in which case $\gamma = \alpha$, or there exist $x_{\lambda} \in S_{\lambda}$, $y_{\mu} \in S_{\mu}$ (λ , μ in Ω) such that $a_{\alpha} x_{\lambda} = c_{\gamma}$ and $c_{\gamma} y_{\mu} = a_{\alpha}$. However, since S is a semilattice of the semigroups S_{α} , $a_{\alpha} x_{\lambda} \in S_{\alpha \lambda}$ and $c_{\gamma} y_{\mu} \in S_{\gamma \mu}$. It follows that $\gamma = \alpha \lambda$ and $\alpha = \gamma \mu$ and so $\gamma \leq \alpha$ and $\alpha \leq \gamma$. Thus, in either case, $\gamma = \alpha$. Likewise, $\gamma = \beta$. Therefore, $\alpha = \beta$ and $D \subseteq S_{\alpha}$.

LEMMA 1.2. Let S be a semigroup. If ab Dba for all a, b in S, then D is a congruence on S.

PROOF. Let $a\mathfrak{D}b$. Then there exists $x \in S$ such that $a\mathfrak{L}x$ and $x\mathfrak{R}b$. Since \mathfrak{L} is a right congruence and \mathfrak{R} is a left congruence, we have

Received by the editors July 3, 1970.

AMS 1969 subject classifications. Primary 2092, 2093.

Key words and phrases. Quasiregular, rectangular band, semilattice, Baer-Levi semigroup, congruence.

for $c \in S$, $ac \mathcal{L}xc$ and $cx \mathcal{R}cb$. That is, $ac \mathcal{D}xc$ and $cx \mathcal{D}cb$. Since by hypothesis $xc \mathcal{D}cx$, and $cb \mathcal{D}bc$, then $ac \mathcal{D}bc$ and also $ca \mathcal{D}cb$. Thus \mathcal{D} is a congruence on S.

LEMMA 1.3. Let S be a semigroup which is a semilattice of bisimple semigroups. Then $\mathfrak D$ is a congruence on S.

PROOF. Let $S = \bigcup_{\alpha \in \Omega} S_{\alpha}$ be a semilattice of the bisimple semigroups S_{α} . Then, by Lemma 1.1 each S_{α} is a union of \mathfrak{D} -classes of S. However, since S_{α} is bisimple, any two elements of S_{α} are \mathfrak{D} -related in S_{α} and hence in S. Consequently, S_{α} consists of a single \mathfrak{D} -class of S. Thus the \mathfrak{D} -classes of S are just the subsemigroups S_{α} and hence \mathfrak{D} is a congruence on S.

As defined in [4], an element x in a semigroup S is said to be quasiregular if there exist elements a, b, c, $d \in S^1$ such that x = xaxb = cxdx. A semigroup S is quasiregular if every element of S is quasiregular. From the results in [4], we find that a regular semigroup is quasiregular, but the converse does not necessarily hold.

THEOREM 1.4. A quasiregular semigroup S, which is a rectangular band of bisimple semigroups, is itself bisimple.

PROOF. Let $S = \bigcup \{S_{i\lambda} | i \in I, \lambda \in \Lambda\}$ be a rectangular band of the bisimple semigroups $S_{i\lambda}$ and let S be quasiregular. Let $x_{i\lambda} \in S_{i\lambda}$, $y_{j\mu} \in S_{j\mu}$. Since $x_{i\lambda}y_{j\mu}$ is quasiregular, there exist elements a, b, c, d in S^1 such that

$$(1.4.1) x_{i\lambda} y_{j\mu} a x_{i\lambda} y_{j\mu} b = x_{i\lambda} y_{j\mu}$$

and

$$(1.4.2) cx_{i\lambda}y_{j\mu}dx_{i\lambda}y_{j\mu} = x_{i\lambda}y_{j\mu}.$$

However, (1.4.1) implies that $x_{i\lambda}y_{j\mu}ax_{i\lambda} \Re x_{i\lambda}y_{j\mu}$ and $(1\cdot 4\cdot 2)$ implies that $x_{i\lambda}y_{j\mu} \pounds y_{j\mu}dx_{i\lambda}y_{j\mu}$, and hence $x_{i\lambda}y_{j\mu}ax_{i\lambda} \pounds y_{j\mu}dx_{i\lambda}y_{j\mu}$. Since $x_{i\lambda}y_{j\mu}ax_{i\lambda} \in S_{i\lambda}$ and $y_{j\mu}dx_{i\lambda}y_{j\mu} \in S_{j\mu}$, and $S_{i\lambda}$ and $S_{j\mu}$ are bisimple, it follows that $S_{i\lambda}$ and $S_{j\mu}$ are contained in a single \mathfrak{D} -class of S for all $i, j \in I$ and $\lambda, \mu \in \Lambda$. Thus S is bisimple.

Theorem 1.5. The following are equivalent for any regular semigroup S.

- (A) S is a semilattice of bisimple semigroups.
- (B) For $a, b \in S$, $ab \mathfrak{D}ba$.
- (C) D is a congruence on S.
- (D) If $e, f, g \in E(S)$, where E(S) is the set of idempotents of S, then $e\mathfrak{D}f \Rightarrow (i) eg\mathfrak{D}fg$ and (ii) $ge\mathfrak{D}gf$.
 - (E) S is a band of bisimple semigroups.

PROOF. Assume (A) and let S be a semilattice Ω of bisimple semi-groups S_{α} . Let $a, b \in S$, and denote the \mathfrak{D} -classes containing a and b by D_a and D_b respectively. Then, by Lemma 1.1, $D_a \subseteq S_{\alpha}$ and $D_b \subseteq S_{\beta}$ for some α , β in Ω . Hence $ab \in D_a D_b \subseteq S_{\alpha} S_{\beta} \subseteq S_{\alpha\beta}$ and $ba \in D_b D_a \subseteq S_{\beta} S_{\alpha} \subseteq S_{\alpha\beta}$. Since $S_{\alpha\beta}$ is bisimple, we conclude that $ab \mathfrak{D}ba$. Thus (A) implies (B). (B) implies (C) by Lemma 1.2. Also (C) implies (D) trivially. We shall now show that (D) implies (C). Suppose $a\mathfrak{D}b$ and $c \in S$. Let a', b', c' be one of the inverses of a, b, c respectively. Since $a'a\mathfrak{L}a$ and \mathfrak{L} is a right congruence, we have $a'a \cdot cc' \mathfrak{L}a \cdot cc'$. Also, since $cc' \mathfrak{L}a$ and since $\mathfrak{L}a$ is a left congruence, we have $a \cdot cc' \mathfrak{L}a \cdot cc'$. Also, since $cc' \mathfrak{L}ac$ and likewise $b'bcc' \mathfrak{D}bc$. Since $a'a\mathfrak{D}b'b$, it follows from (D) that $a'acc' \mathfrak{D}b'bcc'$ and hence $ac\mathfrak{D}bc$. In a similar manner, $ca\mathfrak{D}cb$ and thus \mathfrak{D} is a congruence.

To show that (C) implies (E), suppose $a\mathfrak{D}b$ so that $a\mathfrak{D}bb'$ where b' is an inverse of b. Since \mathfrak{D} is a congruence, this implies that $ab\mathfrak{D}bb'b$ or $ab\mathfrak{D}b$. Thus each \mathfrak{D} -class of S is a subsemigroup of S and moreover, since S is regular, it is a bisimple semigroup [2, p. 61, Example 6]. Denoting the \mathfrak{D} -classes of S by S_{α} , $\alpha \in \Omega$, we have $S = \bigcup \{S_{\alpha} | \alpha \in \Omega\}$. Further, since \mathfrak{D} is a congruence, $S_{\alpha}S_{\beta}$ is contained in a semigroup S_{γ} for some $\gamma \in \Omega$. If we define $\alpha\beta = \gamma$, then, noting that $S_{\alpha}S_{\alpha}\subseteq S_{\alpha}$, Ω becomes a band and thus S is a band of bisimple semigroups.

Finally, in order to show that (E) implies (A), we use the following result by Clifford [1]. "Let $\mathfrak E$ be a class of semigroups. If a semigroup S is a band of semigroups of type $\mathfrak E$, then S is a semilattice of semigroups each of which is a rectangular band of semigroups of type $\mathfrak E$." Now assuming that S is a band of bisimple semigroups, S is a semilattice S of semigroups S_{α} ($S_{\alpha} \in S_{\alpha} \subseteq S_{\alpha} \in S_{\alpha}$), where each S_{α} is a rectangular band of bisimple semigroups. If $S_{\alpha} \in S_{\alpha} \subseteq S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha}$ is regular, there exists $S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha} \in S_{\alpha}$. However, by Lemma 1.1 each $S_{\alpha} \in S_{\alpha} \in S_{$

- 2. **Examples.** In this section we consider some examples to show that Theorem 1.5 is not true in general for semigroups which are not regular. First we need a lemma.
- LEMMA 2.1. Let S be a Baer-Levi semigroup [3, p. 82] and T be any semigroup. Let $A = T \times S$ be the direct product of T and S. Then (t, s) $\mathfrak{D}(t', s')$ if and only if $t\mathfrak{R}t'$, in T, and consequently the \mathfrak{D} -classes of A are just the sets $R \times S$ where R is an \mathfrak{R} -class of T.

PROOF. The proof of the "only if" part follows if we show that the \mathfrak{L} -classes of A contain single elements. Now suppose $(t, s)\mathfrak{L}(t', s')$. Then either

- (i) (t, s) = (t', s'), or
- (ii) there exists x, y in T and a, b in S such that (x, a)(t, s) = (t', s') and (y, b)(t', s') = (t, s).
- If (ii) holds, we have as = s' and bs' = s. Thus, (ba)s = b(as) = bs' = s which contradicts [3, Lemma 8.3]. Hence (ii) cannot hold, and we have established the assertion.

The "if" part is clear, since S is right simple and any two elements of S are R-related.

EXAMPLE 1. Let $E_1 = \{e_1, e_2\}$ be a right zero semigroup of order 2, $E_2 = \{e_3, e_4, e_5\}$ be a left zero semigroup of order 3, and let $E = E_1 \cup E_2$ be a disjoint union where

$$e_ie_j = e_je_i = e_j$$
 for $i = 1, 2, j = 3, 4,$
 $e_1e_5 = e_3,$ $e_5e_1 = e_5,$ $e_2e_5 = e_4,$ $e_5e_2 = e_5.$

The fact that E is a semigroup can be easily verified. Moreover, $e_1 \Re e_2$ and $e_3 \mathcal{L}e_4 \mathcal{L}e_5$. Set $T = E \times S$, the direct product of E and S, where S is the Baer-Levi semigroup. Using Lemma 2.1, the \mathfrak{D} -classes of T are given by

$$D_1 = \{e_1, e_2\} \times S, \qquad D_i = \{e_{i+1}\} \times S \ (i = 2, 3, 4).$$

Clearly, T is a band of the bisimple semigroups $S_i = \{e_i\} \times S$, i = 1, 2, 3, 4, 5. However, if $s \in S$, then $(e_1, s) \mathfrak{D}(e_2, s)$. But $(e_1, s)(e_5, s) = (e_3, s^2) \in D_2$ and $(e_2, s)(e_5, s) = (e_4, s^2) \in D_3$. Thus \mathfrak{D} is not a congruence. Moreover, T is not a semilattice of bisimple semigroups, for otherwise, Lemma 1.3 would imply that \mathfrak{D} is a congruence. Further T does not satisfy the condition (B) of Theorem 1.5, since in that case Lemma 1.2 would again imply that \mathfrak{D} is a congruence.

Example 2. Let $S = \{0, a, 1\}$ where $a^2 = 0$, with 0 as the zero element and 1 as the identity element. Then $\mathfrak D$ is a congruence, being the identity relation. However, S is neither a band of bisimple semigroups nor a semilattice of bisimple semigroups.

EXAMPLE 3. Let $E = \{e_1, e_2\}$ be a left zero semigroup and let S be the Baer-Levi semigroup. Set $T = E \times S$. Then T is a semigroup and by Lemma 2.1, the \mathfrak{D} -classes of T are:

$$D_1 = \{e_1\} \times S$$
 and $D_2 = \{e_2\} \times S$.

Moreover, D_1 and D_2 are bisimple semigroups such that $D_1D_2\subseteq D_1$ and $D_2D_1\subseteq D_2$. Thus $\mathfrak D$ is a congruence on T and T is a band of bi-

simple semigroups. However, if $a = (e_1, s)$ and $b = (e_2, s)$ for $s \in S$, then $ab \in D_1$ and $ba \in D_2$. Hence, ab and ba are not \mathfrak{D} -related. This will further imply that T is not a semilattice of bisimple semigroups.

REMARK. If, in Example 3 above, we write $S_{11} = D_1$, $S_{21} = D_2$, we find that S is a rectangular band of the bisimple semigroups S_{11} and S_{21} . But S is not bisimple. This shows that Theorem 1.4 is not true in general for semigroups which are not quasiregular.

This paper is part of a Ph.D. thesis submitted to the University of Wisconsin-Milwaukee. I would like to thank Dr. R. L. Gantos for his valuable advice and encouragement.

REFERENCES

- 1. A. H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504. MR 15, 930.
- 2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*. vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627.
- 3. ——, The algebraic theory of semigroups. vol. II, Math Surveys, no. 7, Amer. Math Soc., Providence, R. I., 1967. MR 36 #1558.
- 4. Josette Calois, *Demi-groups quasi-inversifs*, Academie des Sciences, Seance du 17, April, 1961, pp. 2357-2359.
- 5. W. D. Munn, Regular ω-semigroups, Glasgow Math. J. 9 (1968), 46-66. MR 37 #5316.

THE UNIVERSITY OF WISCONSIN-GREEN BAY, GREEN BAY, WISCONSIN 54301