A UNIQUENESS THEOREM FOR CERTAIN TWO-POINT BOUNDARY VALUE PROBLEMS: A CORRECTION¹

ROSS FRAKER

ABSTRACT. The boundary value problem x'' = f(t, x, x'), x(a) = A, x(b) = B is shown to have at most one solution on the interval [a, b]. The function f(t, y, z) is such that $f(t, y_1, z_1) - f(t, y_2, z_2) > g(t, y_1 - y_2, z_1 - z_2)$ where initial value problem solutions of z'' = g(t, z, z') have a minimum interval of disconjugacy.

The boundary value problem to be considered is

BVP(1)
$$x'' = f(t, x, x'), \quad x(a) = A, \quad x(b) = B,$$

where f(t, y, z) is defined on the set

$$T \equiv \{(t, y, z) : a \leq t \leq b; |y| + |z| < \infty; a, b \text{ finite}\}.$$

In a recent note J. S. W. Wong [2] stated the following:

THEOREM 1. Assume that f(t, y, z) and g(t, y, z) are continuous on T. Assume further that

- (1) $f(t, y_1, z_1) f(t, y_2, z_2) > g(t, y_1 y_2, z_1 z_2)$ for all (t, y_1, z_1) and (t, y_2, z_2) in T such that $y_1 > y_2$,
 - (2) the initial value problem

IVP(2)
$$z'' = g(t, z, z'), \quad z(c) = 0, \quad z'(c) = C,$$

for $c \ge a$ and $C \in R$ has a solution defined for all $t \ge c$,

(3) there exists an h>0 such that no nontrivial solution z(t) of IVP(2) is such that

$$z(c) = 0 = z(d)$$
 for $0 < d - c < h$,

(4) g(t, y, z) is nondecreasing in y for fixed t and z. Then, if $0 < b-a \le h$, BVP(1) has at most one solution.

There appears to be a mistake in the inequalities used by Wong to prove the existence of a function, $\psi(t)$, positive on some interval to

Received by the editors September 28, 1970.

AMS 1970 subject classifications. Primary 34B15, Secondary 34A40.

Key words and phrases. Boundary value problems, uniqueness, two-point, non-decreasing.

¹ This paper is a portion of a doctoral thesis written under the direction of Professor J. W. Bebernes at the University of Colorado and was partially supported by the National Science Foundation under Grant GP-11605.

the right of c. However, the theorem is true and follows immediately from the following well-known result (see, for example, [1, p. 427]).

THEOREM 2. Assume that f(t, y, z) is continuous on T and that f is strictly increasing in y for fixed t and z. Then BVP(1) has at most one solution.

That Theorem 1 is a corollary of Theorem 2 is clear from condition (1) of Theorem 1 and the following observation.

LEMMA 3. Assume that g(t, y, z) is continuous on T and is nondecreasing in y for fixed t and z. Assume that there exists an h > 0 such that no nontrivial solution z(t) of IVP(2) is such that z(c) = 0 = z(d) for 0 < d - c < h. Then g(t, 0, 0) = 0 for all $t \in [a, b]$.

PROOF. Given the interval [a, b] and the function g(t, y, z) continuous on T, it follows from standard existence theorems that there exists a $0 < \delta_1 \le b - a$ such that the boundary value problem

BVP(3)
$$z'' = g(t, z, z'), \quad z(a_1) = 0, \quad z(b_1) = 0,$$

has a solution on any $[a_1, b_1] \subset [a, b]$ if $0 < b_1 - a_1 \le \delta_1$. Let $\delta = \min(\delta_1, h/2)$ and partition the interval [a, b] by the points $a = u_0 < u_1 < \cdots < u_n = b$ such that for $i \in \{1, 2, \cdots, n\}, u_i = \min(u_{i-1} + \delta, b)$. Now with $a_1 = u_{i-1}$ and $b_1 = u_i$ for $i \in \{1, 2, \cdots, n\}$, BVP(3) has a solution z(t). However z(t) = 0 for all $t \in [u_{i-1}, u_i]$. Hence the result follows.

We remark that condition (2) is superfluous as is the restriction that $0 < b-a \le h$. In addition the closing analysis given by Wong as regards the example g(t, z, z') = -z and the interval of uniqueness $b-a \le h$ is also invalid.

REFERENCES

- 1. P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270.
- 2. J. S. W. Wong, A uniqueness theorem for certain two-point boundary value problems, Proc. Amer. Math. Soc. 19 (1968), 249-250. MR 36 #4063.

University of Colorado, Boulder, Colorado 80302