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SIMPLE ZEROS OF SOLUTIONS OF «TH-ORDER
LINEAR DIFFERENTIAL EQUATIONS1

W. J. KIM

Abstract. Let the nth-order linear differential equation Ly = 0

have a nontrivial solution with n zeros (counting multiplicities) on

an interval [a, ß]. A condition under which Ly = 0 has a solution

with n simple zeros on [a, ß] is established.

Also, a new proof is given for a known result concerning an

interval of the type [a, ß).

Let the differential equation

(1) yM + pn__iy("-» +  - - - + poy = 0,

where po, pi, ■ ■ ■ , pn-i are real-valued and continuous on an interval

I, have a nontrivial solution which has n zeros (counting multiplic-

ities) on I. In this paper we shall be concerned with the following

question: Does equation (1) have a nontrivial solution with « distinct

zeros on I?

Hartman [l] proved that equation (1) has a nontrivial solution

with n zeros (counting multiplicities) on (a, ß) if and only if there is

a non trivial solution with « distinct zeros on (a, ß). A similar result

was obtained by Opial [3], under the condition that p0, pi, • • • , pn-i

be summable on (a, ß). In a recent paper, Sherman [ó] established

the following theorem:

Theorem 1 [6]. Suppose there is a nontrivial solution of (1) with a

zero at a and n zeros on [a, ß). Then there is a solution with a simple

zero at a whose first » zeros on [a, ß) are simple zeros. The interval

[a, ß) cannot be replaced by the closed interval [a, ß].

In view of the interesting and useful nature of this theorem, the

presentation of different proofs appears warranted. We shall provide

an alternative, shorter proof of Theorem 1. This alternative method

of proof has an added advantage; it sheds light on how Theorem 1

may be modified so as to hold for the closed interval [a, ß]. In fact,

we shall prove the following statements.
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Theorem 2. Suppose equation (1) has a nontrivial solution with a

zero at a, n zeros on [a, ß], and n — 2 zeros on (a, ß). Then there exists

a solution of (1) with a simple zero at a, such that its first n zeros on

[a, ß] are simple. The number of zeros on (a, ß), n — 2, cannot in general

be replaced by a smaller number.

We require a few definitions before proceeding with proofs. The

first conjugate point 771(a) of a point aEI is the smallest number

ß>a, ßEI, such that there exists a nontrivial solution of (1) which

vanishes at a and has n zeros on [a, ß]. A nontrivial solution of (1)

which has n zeros on [a, 771(a) ] is called an extremal solution for the

interval [a, »71(a)]. A nontrivial solution of (1) is said to have an

ii— ii— • • • —im distribution of zeros on / if it has a zero of order at

least it at XkEI,i = 1,2, • • • ,m,Xi<x2< ■ ■ ■ <xm.

Letvi, yt, ■ • • , yn be n linearly independent solutions of (1). Define

,       [*il     »il (Mx
w(x; xi    ,x2   , ■ ■ ■ , xm   )

(2)

yx(x) ys(x)

yi(xx) yi(xx)

yl (xi) yi (xi)

(*!-l) (*1-1>,       x
yi     (xx)    y2     (xx)

yx(x2)

yx(xm)

yi(xi)

yi(xm)

Vi        (Xm)    yi        (xm)

y«(x)

Vn(Xl)

y¿(xi)

(*1-1>,     ,

yn       (Xx)

Vn(x2)

yn(xm)

(*m-l>,      x
yn (Xm)

l^m^n — 1, kx + k2+ • • • +km — n — 1; and put

,      m     dl
w(x;xi  , Xi  ,

[i]
■  , Xn-x)   =  W(x; Xi, Xi,

,m, w(x)=w(x; xfr\

, Xn-l).

• . xm ) is a solu-

, m. Moreover,

For fixed ¡e„ i = l, 2,

tion of (1) with a zero of order £,• at Xi, i= 1, 2,

it is a continuous function of the terms, e.g., y*1_1)(^i), appearing in

the determinant.

Proof of Theorem 1. Let y be an extremal solution for [a, 771(a)]

C [a, ß) which has the largest number p of distinct zeros Xx, x2, • • ■ ,

xp on (a, 771(a)) among all the extremal solutions for [a, 771(a)]. Set

a = Xo and 771(a) =xp+1. Suppose "y has a zero of order kt at xf, i = l, 2,
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• ■ • , p-\-l- We shall assume in addition that 'y has the highest order

kp+i of zero at 771(a) among all the extremal solutions which vanish

at x<¡, Xi, ■ ■ ■ , xp+i. If p = n — 2, there is nothing to prove; ^ has

simple zeros at Xi, i = 0, 1, • • • , p-\-l [5, Theorem 7], and has no

other zeros on [a, 771(a) ]. Assume p<n — 2. We first prove the theorem

under the further assumption &j,+i>l. The function Wi defined by

,  , ,        !*ol      [*il IM      [*P+i-lL
wi(x) = w(x; Xq    , Xi    , ■ ■ ■ ,xp    , xp+i      ),

where k0 = n — ki— ■ ■ ■ — kp — kp+i, is a nontrivial solution of (1)

with zeros of order ki at x„ i = 0, 1, ■ ■ ■ , p-\-l. It is nontrivial; for

it^would otherwise imply the existence of a nontrivial solution with

p-r-1 distinct zeros on (a, 771(a)), contrary to the choice of p. It will be

shown that the multiple zeros of Wi can be separated into simple

zeros in a continuous manner. Define w2 by

fcp+l—2 p     p    kj—l

w2(x)

p+1-2       p   p   it-1    ~l

n » niii!
¡_o L ,=o y=-o     J

.
kp+i—2 p     p    ki—1 -1

IT  (f*+i 1 - «ih-i)'     II II (r.y - *Ù>
¡=o L «-o y=o J

■wix; Xq, foi, fo2, • • ■ , fo*0-i> xu fii> • " • , XP,

i~pi, '    ' , b~pkp-i,   fp+iii " ' ' » fp+itp+i-2, Xp+i — Si),

«o<roi<fo2< • • • <xp<Çpi< ■ ■ • <Çpkp-i<i'p+ii< ■ ■ ■ KXp+i — ou

For a given e>0, there exist oi>0 and ô>0 such that w2 is not

identically zero and

(3) I wiix) — w2ix) I   < e,       xE[a,y],   771(a) < y < ß,

if |f#—*i] <b for i = 0, 1, • • ■ , p + l,j=l, 2, ■ ■ ■ , ki—1, and for
i = p-\-l,j = l, 2, • • • , ifep+i —2. This follows from the Taylor formula

which may be written as

0),   ,
yk ixi)

_   VykiUi)-ykjx>)      yi jx() yk'~ jx,)    n

~J'L    (f.y-*.)* (r.,-^)-1       ".'.*     (/-l)!(fo-*.)J

where e,y*—»0 as fy—**<, i = 0, 1, • • • , £ + 1, /=1, 2, ■ • • , fcf— 1, £
= 1, 2, • • • , n. When these formulas are substituted in Wi and the

continuity of Wi with respect to the elements in the determinant—

which defines Wi—is noted, the assertion follows. Evidently, w2 is a

solution of (1) with simple zeros at xB, foi, fo2, • • • , xp, f«i, • t * ,
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xp+i — Si. Furthermore, for a sufficiently small e, w2 has an Mth simple

zero in a given arbitrarily small interval [771(a), 771(a) +€1], €i>0. This

is due to (3) and the maximality of 'y with respect to the order of the

zero at 771(a), since the zeros can disappear only in pairs. This estab-

lishes the theorem for kp+1 > 1.

If kp+i= 1, we define wi by

Wi(x) = w(x; xo    ,xi    , ■ ■ ■ ,xp   ),

where k0 = n — l—ki— ■ ■ • —kp. The rest of the proof is similar to

the case kp+i>i.

The interval [a, ß) cannot be replaced by the closed interval

[a, ß]. This is easily confirmed by examining the extremal solutions

of the equation

(4) y(iv) - y = 0.

This equation has an oscillatory solution, sin x, which vanishes at

x = 0. Thus 771(0) <<». According to a note made in [2], every ex-

tremal solution of (4) has zeros of order exactly 2 at x = 0 and x = 771(0)

and does not vanish on (0, 771(0)). Therefore, no solution of (4) has

four simple zeros on [O, 771(0)].

Proof of Theorem 2. If 771(a) <ß, there is a 7, 771(a) <y<ß, such

that (1) has a solution with a zero at a and n zeros on [a, 7). Thus, by

Theorem 1, equation (1) has a solution with a simple zero at a whose

first n zeros on [a, y)E [a, ß] are simple. Note that in this case the

existence of n — 2 zeros on (a, ß) was not used.

If 771(a) =ß, there exists an extremal solution for [a, 771(a)] with n

distinct zeros on [a, 771(a)], by Theorem 2.2 in [2]. Of course, these

m distinct zeros must be simple.

It remains to show that the number of zeros on (a, ß), n — 2, cannot

be replaced by a smaller number. We shall prove this by exhibiting a

fourth-order equation which has an extremal solution with a 1-1-2

distribution of zeros, but which does not have an extremal solution

with a 1-1-1-1 distribution of zeros. The equation

(5) (6x2 -8x+ 3)yÖT> - (12* - 8)/" + I2y" = 0

has linearly independent solutions yi=x, y2— — x(l — x)2, y3 = x(l — x)3

and j4 = l. Hence, for 0<x<l,

yi    yi

yí   yí
= 2x2(l - x) > 0,yx = x > 0,

and
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)'i

yi

yi'

yi yi

yi yi

yi'   yi'

= 6x3(l - x)2 > 0.

According to a result of Pólya [4, Theorem II], these inequalities

imply the disconjugacy of equation (5) on (0, 1). Moreover, this in

turn implies the disconjugacy of (5) on [O, 1) [6, Theorem 5]. Thus,

for example, y3 is an extremal solution for [0, l] with a 1-3 distribu-

tion of zeros. Likewise, ys = x(k —x)(l — x)2, 0<X<1, is an extremal

solution with a 1-1-2 distribution of zeros. However, it is easily con-

firmed that no extremal solution of (5) can have a 3-1 distribution

of zeros on [0, l]. Hence, no solution of (5) can have four simple

zeros on [0, l] (cf. [2, Theorem 2.2]).
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