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THE NORM OF A HERMITIAN ELEMENT
IN A BANACH ALGEBRA

A. M. SINCLAIR

Abstract. We prove that the norm of a hermitian element in a

Banach algebra is equal to the spectral radius of the element.

An element À in a complex Banach algebra with identity (of norm

1) is said to be hermitian if ||exp iah\\ = 1 for all real a [6], [3, Defini-

tion 5.1]. I. Vidav uses a Phragmen-Lindelöf theorem to show that

the numerical radius [3, Definition 2.1] of a hermitian element is

equal to its spectral radius [6, p. 123, Hilfssatz 3], [3, Theorem 5.10].

We show that the norm of h+ßi is equal to the spectral radius of

h+ßi for h a hermitian element and ß a complex number (Proposition

2). The proof uses a generalisation of Bernstein's theorem which gives

a bound on the derivative of an entire function along the real line.

F. F. Bonsall and M. J. Crabb [2] have recently given an elementary

proof of our Proposition 2 when ß is zero (which is equivalent to ß

real). In Lemma 5 and Proposition 6 we construct a norm on the

algebra of polynomials, in one indeterminate x, which is maximal with

respect to the property that x is hermitian of norm one.

An entire function F is said to be of order R if

log log M (a)
R = lim sup-

a-, « loga

where  M(a)  denotes sup{ | F(z)\ : \z\ ^a}. An entire function of

finite order R is said to be of type T if

T — lim sup orR log M (a).

If the entire function F is of order less than 1 or F is of order 1 and

type less than or equal to T, we say Fis of exponential type T [l, p. 8J.

G. Lumer and R. S. Phillips [5, p. 685, Theorem 2.3] prove the follow-

ing lemma when x is topologically nilpotent. Let v(x) denote the

spectral radius of an element x.

1. Lemma. Let A be a Banach algebra with identity. For each con-

tinuous linear functional f on A and each x in A, the entire function

X—»/(exp Xx) is of exponential type v(x).
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Proof. Since |/(exp Xx)| á||/|| -exp |X| -\\x\\, we see that the order

of /(exp Xx) is less than or equal to 1. Suppose that the order of

/(exp Xx) is 1. The nth derivative of/(exp Xx) at zero is/(xn). Thus, by

equation 2.2.12 of [l, p. 11 ], the type of /(exp Xx) is equal to

lim sup»-,» |/(x") | "", which is less than or equal to the spectral radius

of x. This completes the proof.

Alternatively Lemma 1 may be proved using [3, Theorem 3.8].

For each x in A that is not topologically nilpotent there is a con-

tinuous linear functional/on A with ||/|| =/(l) = 1 such that/(exp Xx)

has order 1 and type v(x). Let B be a closed commutative subalgebra

of A containing x and 1, and let 6 be a character on B such that the

modulus of 6(x) is equal to v(x). By the Hahn-Banach theorem there

is an extension / of $ to,A of norm 1. Then /(exp Xx) =exp X 6(x),

which is of order 1 and type v(x).

2. Proposition. Let A be a Banach algebra with identity. Then

¡|A+j3l|| = vQi-\-ßv) for each hermitian element h and each complex

number ß.
,

Proof. Because the sum of two hermitian elements is hermitian

and a real multiple of the identity is hermitian [6, p. 122, Hilfssatz 2],

[3, Lemma 5.4], we have to prove ||A-|-/3l|| =v(h-\-ß\) only when ß is

imaginary. Let 7 be a real number, and let / be a continuous linear

functional on A of norm 1 with f(h-\-iyi) =||ft-H7l||. Then, by Lemma

1, X—»/(exp \ih) is an entire function of exponential type v(h) whose

modulus is bounded by 1 for all real X. We now state a generalization

of a theorem of S. Bernstein [4, Theorem 1 ], [l, Chapter 11 ]. If F is

an entire function of exponential type T whose modulus is bounded

by 1 for all real X, then

(1) I F'(\) - aF(X) I   ^ (T2 + a2)"2

for all real X and a, where ' denotes differentiation with respect to X.

Although the hypotheses of [4, Theorem 1 ] are not stated in terms of

the type of an entire function it is a routine matter to write them in

this form so that (1) is a special case of [4, Theorem 1 ]. Alternatively,

when T is nonzero this inequality may be obtained from inequality

11.4.5 of [l, p. 214] by substituting a= — T tan œ (see also [l, p. 211

and p. 222]).

We apply (1) with FÇK) =/(exp \ih) and X = 0 obtaining

(2) ||A + iy\\\ =   I f(h) + iyf(\) I   g   I v(h) + iy |

since the derivative of/(exp \ih) is/(/A exp \ih). Since the spectrum



448 A. M. SINCLAIR [May

of h is contained in the real line [6, p. 122, Hilfssatz 2] and y is real,

(3) v(h + iyl) =  | v(h) + i\\.

Combining (2) and (3) completes the proof.

We shall require the following corollary in Proposition 6.

3. Corollary. If Q is a polynomial, with complex coefficients, whose

zeros lie on the imaginary axis, and if h is a hermitian element, then

ilöwil-lödwi)!-
Proof. The spectrum of h is contained in the real line, and so, by

Proposition 2, |[/c|| or —||ä|| is in a (h). Thus v(h—al) = \ \\h\\—a\ for

all imaginary a. Proposition 2 now implies that \\h—ai\\ = | ||â|| —a\.

We factorise Q(h) into linear factors and use this result and the sub-

multiplicativity of the norm to obtain \\Q(h)\\ ^ | (?(||*||)| • As all the

zeros of Q lie on the imaginary axis, |Q(||ä||)| = | Q(—|IÁ| )| • This and

the result that \\h\\ or —||ä|| is in a(h) imply that | Q(\\h \)\ ^v(Q(h))

= \\Q(h%, which completes the proof.

Alternatively Corollary 3 may be proved directly from Lemma 1 by

using Theorems 11.7.7, 7.8.3, and 11.7.2 of [l].

4. Definition. Let C(x) be the algebra of all polynomials in x with

complex coefficients, and let L be the set of all constants, and all

polynomials whose zeros lie on the imaginary axis in the complex

plane. Then every polynomial P in C(x) is the sum of a finite number

of polynomials in L. Let a be positive real number. We define 11 -1[ o

on C(x) by

Ikllo = inf fe I &(«) I : P - X Qi, Qi G L all A ,
ii  ii '

and y -H^onC^x) by

||P||. = sup{ | P(\) | : -era X á a).

5. Lemma. Let abe a positive real number. Then || -||o (and || -H«,) is

an algebra norm on C(x),

the completion of (C(x), ||

•||o==||-||eoi and x is a hermitian element in

o) with spectrum the interval [—a, a].

Proof. If Q is in L, then ß—>\ Q(ß)\ is a monotonically increasing

function of positive real ß, as may be seen by factorising Q into linear

factors and noting that the zeros of Q lie on the imaginary axis so that

ß—*\ß— y\ is a monotonically increasing function for each zero y

of Q. Let P= Y,i Qi with Qi in L< and let -a^\^a. Then |P(X)|
= Sí I Qi&) I = Si I Qi(\ M )I since X is real, since the zeros of Qj lie
on the imaginary axis, and since | X+ia| = | —~K+ia\ for all a. There-
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fore |P(X)| ¿L |0,-(a)|,so thatllPllooallPllo. If ||P||o = 0, P is zero
on [—a, a] and so P = 0. An elementary calculation now shows that

II • || o is an algebra norm on C(x).

Let A be the completion of C(x) in || • || 0- Then, for all real t, exp itx

is the || •||o = limit of il+i/n-tx)n as n tends to infinity [3, Theorem

3.3]. Now ||(l-M/w"ta;)n||o^ | (1 -\-i/n-ta)"\, so that, taking limits as

n tends to infinity, we obtain ||exp z/x||oS|exp ita\ =1. Therefore

11exp itx\\o = 1 for all real t, so that x is a hermitian element in A.

Since x is hermitian and ||x||o^a, the spectrum of x in A is contained

in the interval [—a, a]. For each X in [—a, a] the function P—*P(K) :

Cix)-^>C is a continuous character on C(x) taking the value X at x.

This shows that the spectrum of x in A is [—a, a], and completes the

proof.

The norm || -||0 given above is the maximal norm on C(x) such that

x is hermitian with ||x|| =a.

6. Proposition. Let a be a positive real number, let A be a Banach

algebra with identity, and let h be in A. Then h is hermitian with

\\h\\ ̂ aif,andonlyif,\\P(h)\\ g,\\P\\0for all P in C(x).

Proof. If h is hermitian with ||&|| ga, then, for each Q in L,

llöWll = I ö(||*||)| ^ I <?(<*) I by Corollary 3 and the monotonicity of
Qi<x) |, which we proved in Lemma 5. Thus ||P(A)|| áX<> I Qiia) | Ior

all Qj in L with P=J^i Qi, so that ||P(A)
Conversely, suppose that ||P(A)|| =S||P[

[3, Theorem 3.3],

g||P||o for all P in Cf».

o for all P in C(x). Then, by

||exp*7A|| = lim ||(1 + i/n-th)n\\ ^ lim ||(1 + i/n-tx)"\\0

= ||exp iix||o = 1

for all real t. This implies that ||exp ith\\ =1 for all real t, and com-

pletes the proof since \\h\\ ^||x||o^«.
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