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THE SPECTRA OF SUBNORMAL OPERATORS1

C. R. PUTNAM

Abstract. It is shown that a subnormal operator having its

spectrum on a simple closed curve is necessarily normal, and that

the corresponding assertion with "subnormal" replaced by "hypo-

normal" is in general false.

1. All transformations T considered here are bounded operators

on a Hubert space ¿p. Recall that T is said to be hyponormal if

(1.1) T*T - TT* ^ 0,

and subnormal if T has a normal extension A on a Hubert space

$D§ such that N leaves £) invariant and T = N\ §. It is known that

every subnormal operator is hyponormal but that the converse

assertion is false. For properties of subnormal and hyponormal

operators, see, e.g., Halmos [5], Putnam [10].

It has recently been shown (Putnam [ll ]) that if T is hyponormal

then its spectrum, sp(F), satisfies the inequality

(1.2) 7r||F*F - 7T*|| ^ meas2(sp(F)),

where meas2 denotes ordinary Lebesgue planar measure. In particu-

lar, if T is hyponormal and if its spectrum has measure zero, then T

is normal. As a special case, if T is hyponormal and if its spectrum is

a subset of a simple closed curve having zero planar measure, then

T is necessarily normal. It will be shown below, however, that if T

is subnormal and if its spectrum is contained in any simple closed

curve C, thus allowing the possibility that C be an Osgood curve

(cf. [8]), then necessarily T is normal. On the other hand, the corre-

sponding assertion becomes false if the hyponormality hypothesis on

T is weakened to that of subnormality. Thus, there will be proved

the following:

Theorem, (i) If T is subnormal and if

(1.3) sp(F) C C,

where C is a simple closed curve, then T is normal.

Received by the editors June 8, 1970.

AMS 1969 subject classifications. Primary 4730, 4740; Secondary 4710,

Key words and phrases. Spectra of hyponormal operators, spectra of subnormal

operators, measure of spectrum.

1 This work was supported by a National Science Foundation Research grant.

Copyright © 1971, American Mathematical Society

473



474 C. R. PUTNAM [May

(ii) There exists a hyponormal T which is not normal but which

satisfies (1.3).

2. Proof of (i). According to the Riemann mapping theorem, the

simple closed curve C and its interior, R, can be mapped homeo-

morphically onto \w\ ^1 by w=f(z), where/(z) is analytic in R. In

view of Mergelyan's theorem (Mergelyan [7], cf. Rudin [12, p.

386]), there exists a sequence of polynomials {pn(z)j, n — \, 2, • • • ,

such that, as «—>°o,

(2.1) pn(z) ->/(z)        uniformly on Ä U C.

Let N denote the minimal normal extension on $D§ of T with the

spectral resolution

z dKz.(2.2) N = j

Then N and its positive powers, hence all polynomials pn(N), leave

S> invariant. In view of (2.1) (and sp(N)Esp(T); see Halmos [5,

p. 102]),

(2.3) Pn(N) = J pn(z) dKzzlM m j f(z) dKz,       n -> «,

the convergence being in the norm topology. In particular, the nor-

mal operator M also leaves § invariant and, as n—>»,

(2.4) Pn(T)=$S = M\&.

Since 5 has the normal extension M, S is subnormal. It will next

be shown that

(2.5) sp(5)C {z:|z|=l}.

To see this, let z belong to sp(S) and suppose that \z\ ¿¿1. If A„

= pn(T), then sp(An)Epn(C), in view of (1.3) and the spectral map-

ping theorem. It follows from (2.1) that for every e>0 there exists a

positive integer pt such that sp(An) is contained in the annulus

1— e< \z\ <l+€ for n^pt. Since \z\ ¿¿1, there exists a number

e>0 such that dist(z, sp(^l„))>c for large n. Since An is subnormal,

hence hyponormal, it follows that, for large n, ||(^4n— zl)x\\ ^cUx\\

and ||(^4*— zl)x\\ ^c\\x\,x'mij?. Consequently, by (2.4), ||(5—zl)x}\ ^

c||a;|| and ||(5*— zl)x\ ^c\\x\\, so that z does not belong to sp(5).

This proves (2.5).

Since 5 is hyponormal, it follows from (2.5) that S is normal.

(Relation (1.2) can be applied here. However, the result also follows,
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for instance, from earlier work of Donoghue [4] or Stampfli [13, p.

473].) Next, since M is normal (on $) and since M leaves § invariant,

and the restriction, 5, of M to § is also normal, then § reduces M;

see Berberian [l, p. 160].

If z=g(w) denotes the inverse mapping of w=f(z) then it is clear

that

(2.6) A = j g(f(z)) dKz,

and, by another application of Mergelyan's theorem, that there exist

polynomials qn(w) satisfying, as w—>»,

(2.7) <7»(w) —> g(w)        uniformly on | w\ ^ 1.

Since § reduces M, § also reduces the operators q„(M). Also, since

qn(M)z$N as w—>» (cf. (2.3)), N is reduced by §, and hence T = N,

that is, T is normal. This completes the proof of (i).

3. Before giving the proof of (ii) (in §4 below), it will be con-

venient to collect several facts about hyponormal operators. Let T

be hyponormal with the rectangular representation

(3.1) T = H + U,       HandJ self ad joint.

Let H have the spectral resolution

(3.2) H =   f X dEx.

It was shown in [°], (see also [l0]) that the spectra of IT and J are

the (real) projections of the spectrum of T onto the reed and imagi-

nary axes, respectively. Further, if a denotes a Borel set of the real

line and if Ta denotes the operator Ta=E(a)TE(a) on the Hubert

space E(a)ÍQ, then Ta is hyponormal and any reducing subspace on

which Ta is normal is necessarily also a reducing space of T on which

T is normal; see  [11, Lemma 5]. Also, it was shown in  [ll] that

(3.3) sp(Fa) C sp(F),

so that sp(r„) is a subset of that part of sp(F) having as its projec-

tion on the real axis the closure of a. (Actually, (3.3) was proved in

[l 1 ] when a is an interval but the inclusion is easily generalized to

any Borel set.)

An operator T is said to be completely hyponormal if T has no

nontrivial reducing subspace on which it is normal. In case T is
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completely hyponormal then, in particular, its real and imaginary

parts are absolutely continuous; see [10, p. 42].

4. Proof of (ii). Let T denote any completely hyponormal operator,

so that, in particular, sp(iî) has a positive linear measure. Let a be

any nowhere dense perfect subset of sp(i7) for which E(a) 5^0, where

H has the spectral resolution (3.2). (Consequently, a is a Cantor set

of positive linear measure.) Let Ta have the rectangular decomposi-

tion

(4.1) Ta = Ha + Ua,

where Ha=fa\dE\ and Ja=E(a)JE(a) has the spectral resolution

(4.2) /„ = j X dF™.

Then sp(Ha) is the projection of sp(r„) onto the real axis. Further

(cf. §3), Ta is completely hyponormal and (3.3) holds. Let ß denote

any nowhere dense perfect subset of sp(Ja) for which F(a)(ß) ^0 and

define Taß as

(4.3) Taß = F^(ß)TaF^(ß).

Then, as in the discussion above, Taß is completely hyponormal and

(4.4) sp(7\„0 EaXß.

In order to complete the proof of (ii) it is sufficient to show that

there exists a simple closed curve C which contains the product set

aXß- But the existence and, in fact, explicit construction of such a

curve can be established in a manner similar to that of the standard

construction of space-filling (Peano) curves; see, for instance, Hob-

son [6, pp. 451-458]. (The author is indebted to R. B. Darst for

pointing out the existence of such a curve C and also for calling his

attention to the paper of Darst and Goffman [3].)

5. Remarks. It has been noted by K. Clancey [2, p. 22], as well as

by J. G. Stampfli, that if T is subnormal and if its spectrum is no-

where dense and does not separate the plane, then T must be normal.

The example of §4 above shows that the corresponding assertion can

be false if "subnormal" is replaced by "hyponormal," and, moreover,

that there exists a completely hyponormal operator having a totally

disconnected spectrum.

The author is grateful to the referee for furnishing the following

alternate proof of part (i) of the Theorem and which is due to J. G.
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Stampfli. Since T is subnormal then sp(F) is a spectral set of T. If

f(z) is defined as in §2 above then, in view of (2.1), the image of

sp(F) under/(z) is a spectral set oif(T); see von Neumann [14, p.

266]. Consequently, the operator f(T), hence also T = g(f(T)), is

normal.
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