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A NOTE ON POINT-COUNTABILITY IN LINEARLY
ORDERED SPACES

HAROLD R.  BENNETT

Abstract. In this note linearly ordered topological spaces (ab-

breviated LOTS) with a point-countable base are examined. It is

shown that a LOTS is quasi-developable if and only if it has a

<r-point-finite base and a LOTS with a point-countable base is para-

compact. An example of a LOTS with a point-countable base that

does not have a <r-point-finite base is given. Conditions are given

for the metrizability of a LOTS with a point-countable base and it

is shown that a connected LOTS with a point-countable base is

homeomorphic to a connected subset of the real line.

1. Introduction. Recent years have seen a growth of interest in

topological spaces which have a point-countable base [l]. For ex-

ample, Miscenko proved that a compact Hausdorff space with a

point-countable base is metrizable [20 ] and Heath generalized this

result by showing that a metacompact p-space with a point-countable

base is developable [IS]. In a different direction, Heath has also

shown that a semimetric space with a point-countable base is devel-

opable  [l4].
A particularly interesting subclass of the class of spaces with a

point-countable base is the class of spaces with a c-point-finite base.

These spaces have been studied by S. Hanai [12], C. E. Aull [4] and

Heath [13]. In [3], Arhangel'skii showed that a perfectly normal,

collectionwise normal space with a ff-point-finite base is metrizable.

In this note linearly ordered topological spaces which have a point-

countable base are examined. Linearly ordered spaces with a o--point-

finite base are characterized in terms of quasi-developability and an

example is given of a linearly ordered space with a point-countable

base that does not have a o--point-finite base.

2. Point-countability in linearly ordered spaces. Recall that a

linearly ordered topological space (abbreviated LOTS) is a topological

space whose topology agrees with the topology induced by some

linear ordering. (Throughout this note let < denote the linear

ordering.) Also recall that if (B is a collection of subsets of a set X,

then (B is said to be a point-countable ipoint-finite) collection if each
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element of X is in at most countably (finitely) many elements of 03

and 03 is said to be a a-point-finite collection if 03 = U {($>i'.iEZ+}

where each 03¿ is a point-finite collection. A base 03 for a space X is

said to be a point-countable base (o-point-finite base) if 03 is a point-

countable ((T-point-finite) collection.

Let all undefined terms and notation be as in [7]. In particular let

E1 denote the set of real numbers and Z+ denote the set of natural

numbers.

One of the most useful tools in studying collections of intervals in

a LOTS is the notion of a coherent collection of convex sets.

(2.1) Definition. A collection of sets ft is said to be a coherent

collection if, for any subcollection 03 of ft, there is an element of 03

that intersects some element of ft —03. The collection 03 is said to be

a maximal coherent subcollection of ft if there does not exist a coherent

subcollection 6 of ft such that 03 is a proper subcollection of 6.

If 9 is a collection of sets, then let 9* = U {GEÇ}■

The following lemma is obvious.

(2.2) Lemma. Let 9 be a collection of nonempty subsets of a set X.

Let C be the family of all maximal iwith respect to E) coherent subcollec-

tions of 9- Then 9 = U Q and if 3C and 3C are distinct elements of 6, then

3c*r\x* = 0.

(2.3) Definition. A subset A of a linearly ordered set X is said

to be convex if whenever a, bEA, then {xEX:a<x<b}QA.

The next lemma is fundamental in proving the results of this

section.

(2.4) Lemma. Let g be a coherent collection of convex subsets of a

linearly ordered set X. Then there are simple sequences [x(i)} and

{y(i)}' possibly finite, of points of g* such that

(a) x(l)=y(l),

(b) if x(k + l) (respectively yik + 1)) is defined, then xik + 1) <xik)

irespectively y(k)<y(k + l)) and x(k + l)(£St(x(k), g) (respectively

y(k + l)$St(y(k), 9)) and St(*(*), g)nSt(*(* + l), 9)£0, (respec-
tively St(y(k), g)nSt(y(* + l), g)$jZ0, and

(c) each element of g* is contained in some set St(x(&), g) or some

setSt(y(k),g).

Proof. Let a be a well ordering of g* and let x(l) be the first ele-

ment of a. ii x(l), • • • , x(k) have been defined, let x(k + l), if it

exists, be the first element of a such that

(i) *(* + l)<*(*),
(ii) x(k + l)£St(x(k), g), and
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(iii) st(*(*+i), s)nst(*(*), s)^0-
It follows that there can be at most a simple sequence of such points

for suppose 9* contains an element x(<x>) such that

(i) x(<x>)<x(k) for each kEZ+,

(ii) *(cx3)GSt(ie(fe), g) for each kEZ+, and

(iii) St(x(oo), g)n(U{St(*(*), S):kEZ+})*0.
Hence there exists kEZ+ such that St(x(fe), g)r\St(x(w), 8)^0-

But then it follows that a;(oo)GSt(a:(£-fT), g) which is a contradic-

tion. Let 3c(l) =y(l) and, in an analogous manner, choose a simple

sequence  {y(k)} such that

(i) y(k)<y(k + l),
(ii) y(k-r-l)$St(y(k), g), and

(iii) St(y(£),g)nSt(y(fc + l),g)^£f.
It follows that {x(k)} and {y(£)} are the desired sequences.

The following corollary is an immediate consequence of parts (b)

and (c) of the preceding lemma.

(2.5) Corollary. If g is a point-countable coherent collection of

convex subsets of a linearly ordered set X, then there is a countable sub-

collection X. of g such that 3C* =8*.

The next theorem was proved independently1 by Fedorcuk (see

[8])-

(2.6) Theorem. A LOTS is paracompact if every open cover has an

open point-countable refinement.

Proof. Let A" be a LOTS with the property that each open cover

has an open point-countable refinement. Let Ti be any open covering

of X and let g be an open point-countable refinement of It. No gener-

ality is lost if it is assumed that the elements of g are convex. Let

8 = U { G„:aEA J where each Qa is a maximal coherent subcollection

of 8- By (2.2) if a^ß, then 6*^63 = 0 and, for each aEA, there is

a countable subcollection 5Ca = {H(a, i):iEZ+] such that 3C* = C*.

It follows that 3C¿= {H(a, i) \aEA } is a locally finite collection and

X. = U { Ki'.iEZ+} is a (T-locally finite open refinement of "U. Thus X

is paracompact.

(2.7) Corollary. A LOTS with a point-countable base is hereditarily

paracompact.

Proof. Let A" be a LOTS with a point-countable base. Note that

each open subspace of X is the pairwise disjoint union of its convex

1 This was pointed out by the referee to whom the author is very grateful for valu-

able suggestions in completing this note.
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components, each of which is open. It follows that each of the convex

components is paracompact since each is a LOTS in its relative

topology and has a point-countable base. Thus each open subspace

of X is paracompact. Theorem 2.5(b) of [7] shows that this is suffi-

cient to insure that X is paracompact.

The concept of a quasi-developable space is a natural generaliza-

tion of a developable space (see [2l]). A LOTS with a <r-point-

finite base can be characterized in terms of the concept of quasi-

developability.

(2.8) Definition. A sequence {gi, g2, • • • } of collections of

open subsets of a topological space A7 is a quasi-development for X

provided for each pEX and each open set R containing p there

exists n(p, R)EZ+ such that pESt(p, Qn(P,it))ER. A topological

space with a quasi-development is called a quasi-developable space.

The next example shows a space, even a LOTS, may be quasi-

developable without being developable.

(2.9) Example. Let F denote the unit square topologized by the

lexicographic ordering (see [16]) and let F contain X={(x, y)

E YúíxEQ, then y =0ory = 1 or if xEE1, then y = l/«or y = 1 — 1/w,

for nEZ+, «2ï2}. It follows that X topologized by the induced

lexicographic ordering is a nonmetrizable quasi-developable LOTS.

Let gx= \{(x, y)} :xEEl and yE {0, 1} } and if {Ru R2, ■ ■ ■ } is a

countable base for the countable set T= {(x, y):xEQ and yE ¡0, 1} },

then let g„+i = {Rn} for each nEZ+. It follows that {glt g2, • • ■ } is

a quasi-development for X. Since F is a closed, non-Gj-subset of X,

it is clear that X is nonmetrizable.

In [4], C. E. Aull has shown that a space with a (T-point-finite base

is quasi-developable. Example 3.3 of [19] shows that, in general, the

converse of this result is not true, but for a LOTS the following holds.

(2.10) Theorem. A LOTS is quasi-developable if and only if it has

a o-point-finite base.

Proof. Let X be a LOTS with quasi-development {%i, Q2, • ■ ■ }■

Without loss of generality let the elements of each g„ be convex sets.

If nEZ+, let {g(«, a) \aEAn } be the set of all maximal coherent sub-

collections of g„. Let H(n, a) = {x(l),x(2), ■ ■ ■ ,y(l),y(2), ■ ■ ■ } be

the countable collection of points of Q(n, a)* described in (2.4). Let

Hn = U {H(n, a)\aEAn}. For each xEH„ construct the following sets

(i) St(x, g„),
(ii) RSt(x, g„) = {yGSt(x, g„) :x <y}, and

(iii) LSt(x, g„) = {yESt(x,<3n):y<x}.

Let
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CB„= {St(x,gn):xE Hn} V {RSt(x,Sn):xE H„\ VJ {LSt(x,Çn):xE Hn} -

Notice that (B„ is a point-finite collection for if pE&n, then either

pEHn or pQHn. If pEHn, then p is only in St(p, 8n). If P^H„, then

there exists zEHn (let z <p) such that pESt(z, c¡n)- If there is atEHn

such that z<t and St(z, 8n)^St(/, 8n)^0, then p is in at most four

elements of (B„, namely St(z, 8n), RSt(z, Qn), LSt(£, 8n), and St(t, 8«).

If no such t exists, then p is in at most St(z, Q„) and RSt(z, 8»)-

Define (B„ for each nEZ+ and let 03 = U {(B„ :nEZ+ ]. It follows that

03 is a base for X, for if pEX and R is an open set containing p, then

there exists n(p, R)=nEZ+ such that pESt(p, S»)Ci?. If pEHn,

then St(p, 8n)G©„ and 03 is a base. If p(£Hn, then there is a zEHH

(let z<p) such thatpGSt(z, Qn). It follows that RSt(z, 8»)CSt(£, 8»)

Ci?. Since RSt(z, Qn)E($>n, it is clear that 03 is the desired tr-point-

finite base for X.

It is clear that a space with a a-point-finite base has a point-

countable base. The next example, an alteration of an example which

M. E. Rudin was kind enough to communicate to the author, shows

that the converse of this statement is not true even for LOTS.

(2.11) Example. There is a hereditarily paracompact LOTS X

that has a point-countable base and does not have a o--point-finite

base. If wi denotes the first uncountable ordinal, then

X = {{xala g \}:\ < wi, xa E E1 - Qii a < X, xx E Q}-

If x= {xa:a^\} and y= |ya:a^ô} let L(x)=\ and agree that y

extends x if xa =ya for each a<X. If xj^y, then there is a first ordinal

7 such that Xy^y^; define x<y if xy<yy. The linear topology induced

on X by the linear ordering < has the desired properties.

Let U(x,n)= {yEX:y extends x and x\ — l/n<y\<x\ + l/n where

\ = L(x)} and let cll= {U(x, n):xEX, nEZ+). It is easy to check

that It is a base for X. Since each xEX can extend at most countably

many elements of X, it follows that 11 is a point-countable base for X.

To show that X does not have a cr-point-finite base it is sufficient

to show that if 63 is a base for X, then 03 has an uncountable, mono-

tone decreasing (with respect to set inclusion) subfamily. If 03 is any

base for X, let i?iG03 and XiEBi. There exists niEZ+ such that

Uixi, «i) C-Bi- Let x2 be an extension of Xi such that x2E Uixi, ni) and

Lix2) =Lixi) + l. Then there exists B2E® and n2EZ+ such that

Uix2, n2)EB2EUixi, Ki). To apply transfinite induction suppose

Xi, ■ • ■ , xa, ■ ■ ■ and Bi, ■ ■ ■ , Ba, ■ ■ - have been chosen for each

a <ß <«i such that for each a <ß

(i) xa extends x y il y <a,
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(ii)   U(xa, na) EBa, and

(iii) BiDU(xi,ni)D ■ ■ ■ DBa^U(xa,na)D

Choose XßEX such that xß extends xa if a<ß and

L(xß) = sup{L(xa):a < ß} + 1.

It follows U(xß, l)EU(xa, na) for each a<ß. Thus U(xß, 1)C-B« for

each a<ß. Let BßE<$> such that XßEBßE U(xß, 1). Then there exists

nßEZ+ such that [/(x^, nß)EBß. Thus the induction step is complete

and 03 contains an uncountable, monotone decreasing subfamily

{Ba : a < «i}. Consequently 03 is not a c-point-finite base.

It follows from (2.7) that X is hereditarily paracompact.

3. Metrization of LOTS with a point-countable base. A space X

satisfies the countable chain condition (abbreviated CCC) if any dis-

joint collection of open sets is countable. Since a LOTS which satisfies

CCC is hereditarily Lindelöf [18], it follows from (2.10) that a LOTS
with a (r-point-finite base which has CCC satisfies the Second Axiom

of Countability. In [24], it is shown that a LOTS is collectionwise

normal, so the theorem of Arhangel'skiï [3] which was quoted in the

introduction establishes the second part of the following theorem.

(3.1) Theorem. Let X be a LOTS with a a-point-finite base. Then

X is metrizable if X satisfies either of the following :

(i) X satisfies CCC,
(ii) X is perfectly normal.

If the above hypothesis is weakened to require that X only has a

point-countable base, then (3.1) can no longer be proved. This is

shown in the next theorem which was proved independently1 by

Ponomarev [22]. Recall that a Souslin space2 is a nonseparable LOTS

which satisfies CCC. It is easily seen that a Souslin space has closed

sets G«.

(3.2) Theorem. If there exists a Souslin space, then there is a

Souslin space with a point countable base.

Proof. The proof (see [5]) is quite lengthy and will be omitted.

It would be interesting to know whether a perfectly normal LOTS

with a point-countable base must be metrizable, independent of the

Souslin hypothesis. Notice that the space in (2.10) does not have

closed sets Gj.

If a completeness condition is imposed on the spaces in question,

then metrization theorems can be obtained for LOTS with a point-

* It is known to be consistent with certain axioms of set theory that such a space

exists. See [23].
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countable base. One such condition is that of a p-space in the sense

of Arhangel'skiï [2].

(3.3) Definition. A completely regular space A" is a p-space pro-

vided that for some Hausdorff compactification F of A" there is a

sequence {(Pi, <P2, ■ ■ ■ ] of collections of open subsets of F, each of

which covers AT, such that if xEX, then 0{St(;c, <Pn)lnEZ+} EX.

It is known that any locally compact space and any absolute G¡

space (i.e. a space that is a G¡ subset of its Stone-Cech compactifica-

tion) is a p-space.

(3.4) Theorem. A LOTS is metrizable if and only if it is a p-space

with a point-countable base.

Proof. Let A" be a LOTS with a point-countable base that is a

p-space. By (2.6), X is paracompact. In [9] it is shown that a para-

compact p-space with a point-countable base is metrizable.

It is known [17] that any connected or locally connected LOTS is

locally compact, so a (locally) connected LOTS with a point-count-

able base is metrizable. However more can be shown: a connected

LOTS with a point-countable base is a subspace of the real line. The

proof is based on a characterization of paracompactness in LOTS

found in [lO] and it is convenient to repeat some definitions before

proceeding.

(3.5) Definition. An interior gap of a LOTS X is a Dedekind cut

(A \B) of X such that A has no last element and B has no first ele-

ment; such a gap is regarded as a virtual element of X and it satisfies

the expected ordering relationships. In case X has no first element, a

virtual element u, such that u<x for all x in X, is introduced and

referred to as the left-end gap of X ; if X has no last element the right-

end gap is defined analogously. The compact LOTS consisting of X

together with all its gaps is denoted by X+.

(3.6) Definition. A gap m of a LOTS X is called a Q-gap from the

left (right) provided there exists a regular initial ordinal co„ and an

increasing (decreasing) sequence {xy:y<aa} of points of X+ having

the limit u such that for every limit ordinal X less than «„, the limit

in X+ of {x:7<X} is a gap of X; a gap u of X is called a Q-gap if it

is a Q-gap from the left and from the right (or only the appropriate

one in case u is an end gap).

The characterization referred to is that a LOTS is paracompact if

and only if every gap is a Q-gap.

(3.7) Theorem. A connected LOTS with a point-countable base is

homeomorphic to a connected subset of the real line.
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Proof. Let X be a connected LOTS with a point-countable base.

By (2.6), X is paracompact and, thus, every gap of X is a Q-gap.

Observe then, since X is connected, the regular initial ordinal asso-

ciated with any gap must be coo- The result follows by considering

three cases.

If X has both endpoints, then X is a compact space with a point-

countable base. Thus X is metrizable (see [19]) and, therefore,

separable.

If X has only one endpoint, say the right endpoint b, then the left

endpoint v is a virtual element of X+ and there is a point sequence

\xi, Xi, ■ ■ ■ } of elements of X that converges to v. For each nEZ+,

[xn, b] is a compact metric space and, thus, separable. Therefore

X = U {[xn, b ] : n E Z+} is separable.

It is easy to generalize these arguments to the case where X has

no endpoints and see that, in any case, X is separable. It follows, by

a characterization in [ll], that X is homeomorphic to a connected

subset of the real line.

Notice that the hypothesis of (3.7) cannot be weakened by replac-

ing "connected" by "locally connected." To see this consider the

LOTS {(x, y):0^xgl, 0<y<l} ordered lexicographically.
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