INTEGRAL RING EXTENSIONS AND PRIME IDEALS OF INFINITE RANK

WILLIAM HEINZER

ABSTRACT. An example is constructed showing that for an integral ring extension $R \subset T$, and a prime ideal P of R having infinite rank, it can happen that in T each prime ideal lying over P has finite rank.

By the rank (or height) of a prime ideal P in a commutative ring Ris meant the maximal length of descending chains of prime ideals of R starting with P. Thus P has rank n if there exists a descending chain $P = P_0 \supset P_1 \supset \cdots \supset P_n$, but no such chain of longer length; and P has infinite rank (or rank ∞) if there exist arbitrarily long chains of primes descending from P. Let $R \subset T$ be a pair of commutative rings (having a common identity). One says that the going up property (GU) holds for the pair $R \subset T$ if whenever $P \subset P_0$ are prime ideals in R and Q is a prime of T such that $Q \cap R = P$, then there exists a prime Q_0 in T such that $Q \subset Q_0$ and $Q_0 \cap R = P_0$. It is well known that if T is integral over R, then GU holds for the pair $R \subset T$; and it can be readily seen that if $R \subset T$ satisfies GU and P is a prime ideal in R of rank n, then there exists in T a prime ideal Q such that Q has rank $\geq n$ and $O \cap R = P$ [3, Theorem 46, p. 31]. We show, however, that this result cannot be extended to primes of rank ∞ even for R an integral domain and T the integral closure of R. Of course GU insures that there can be no fixed bound on the ranks of the primes of T lying over a rank ∞ prime P of R. Thus in our example there must be infinitely many primes of T lying over P. In particular, T cannot be a finite Rmodule [1, p. 40].

The idea involved in our construction may be stated as follows.

LEMMA. Let R be a quasi-local domain with maximal ideal P and quotient field K. Assume that for each positive integer n there exists a valuation ring of K containing R and having rank n, but that R is contained in no valuation ring of K having infinite rank. Let T be the integral closure of R. If T is a Prüfer domain, then P has infinite rank but each prime ideal of T has finite rank.

PROOF. If Q is a prime ideal of T, then the localization T_Q is a

Received by the editors June 23, 1970.

AMS 1969 subject classifications. Primary 1320.

Key words and phrases. Integral ring extension, prime ideal, going up property, valuation ring, Prüfer domain.

valuation ring and the rank of the prime ideal Q equals the rank of the valuation ring T_Q . Thus each prime of T has finite rank and by intersecting chains of primes of T with R, we see that P has infinite rank.

Construction of the example. Let k be an arbitrary field and let $\{x_i\}_{i=1}^{\infty}$ be a collection of indeterminates over k. We construct a rank one valuation ring V_1 on the field $K = k(x_1, x_2, \cdots)$ such that V_1 has the form $k+M_1$ where M_1 is the maximal ideal of V_1 . This can be done, for example, by mapping the x_i onto rationally independent real numbers and then extending this map to a valuation of K trivial on k. The x_i having rationally independent values assures that k maps isomorphically onto the residue field of V_1 and hence that $V_1 = k + M_1$. For each integer $n \ge 2$, let L_n denote the field $k(\{x_i | i \le n \text{ or } i \ge 2n\})$. Thus $K = L_n(x_{n+1}, \cdots, x_{2n-1})$ and $x_{n+1}, \cdots, x_{2n-1}$ are algebraically independent over L_n . Consider the valuation ring $V_1 \cap L_n$. By mapping $x_{n+1}, \cdots, x_{2n-1}$ onto suitably chosen elements of a suitable totally ordered abelian group containing the value group of V_n we can obtain a valuation ring V_n of K such that:

- (1) $V_n \cap L_n = V_1 \cap L_n$.
- (2) V_n has rank n.
- (3) V_n has the form $k+M_n$ where M_n is the maximal ideal of V_n . See, for example, [1, Proposition 1, p. 161].

Let $P = \bigcap_{i=1}^{\infty} M_i$ and let R = k + P. We note that R is a quasi-local domain with maximal ideal P. For if α is a nonzero element of k and $m \in P$, then $(\alpha + m)^{-1} = \alpha^{-1} + m'$, where $m' = -m/\alpha(\alpha + m) \in M_i$ for each i, so $m' \in P$. Let T be the integral closure of R.

CLAIM. T is a Prüfer domain with quotient field K, $T = \bigcap_{i=1}^{\infty} V_i$, and no valuation ring between T and K has infinite rank.

PROOF. Let $K_n = k(x_1, \dots, x_n)$, $R_n = R \cap K_n$, and let T_n be the integral closure of R_n . Note that for $s \ge n$, $V_s \cap K_n = V_1 \cap K_n$. Hence

$$R_n = k + \left(\bigcap_{i=1}^{n-1} M_i \cap K_n\right).$$

We show that $T_n = \bigcap_{i=1}^{n-1} V_i \cap K_n$. If $y \in \bigcap_{i=1}^{n-1} V_i \cap K_n$ then there exists $a_i \in k$ such that $y - a_i \in M_i$, for each i such that $1 \le i < n$. It follows that $\prod_{i=1}^{n-1} (y-a_i) \in \bigcap_{i=1}^{n-1} M_i \cap K_n \subset R_n$ so y satisfies an equation of integral dependence over R_n . Thus T_n is a finite intersection of valuation rings of the field K_n . Hence T_n is a Prüfer domain with quotient field K_n and each valuation ring containing T_n contains some $V_i \cap K_n$ [1, p. 132-134]. It follows that $T = \bigcup_{i=1}^{\infty} T_i$ is also Prüfer [2, p. 260], T has quotient field K, and $T = \bigcap_{i=1}^{\infty} V_i$. Now

suppose W is a valuation ring between T and K. Since W contains T_n , W contains some $V_i \cap K_n$. If W contains $V_1 \cap K_n$ for all n, then W contains V_1 so either $W = V_1$ or W = K. If $V_1 \cap K_n \subset W$, then for $s \ge n$, let $W_s = W \cap K_s$. We know that $V_j \cap K_s \subset W_s$ for some j < s. But, for $j \ge n$, $V_j \cap K_s \cap K_n = V_1 \cap K_n$, so W_s is contained in $V_j \cap K_s$ for some j < n. Since V_j has rank j, we see that W_s has rank < n. It follows that $W = \bigcup_{s=n}^{\infty} W_s$ also has rank less than n.

REFERENCES

- 1. N. Bourbaki, Algèbre commutative, Chapitres 5, 6, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660.
- 2. R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., no. 12, Queen's University, Kingston, Ont., 1968. MR 37 #5198.
 - 3. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970.

Louisiana State University, Baton Rouge, Louisiana 70803

Purdue University, Lafayette, Indiana 47907