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INTEGRAL RING EXTENSIONS AND PRIME
IDEALS OF INFINITE RANK

WILLIAM HEINZER

Abstract. An example is constructed showing that for an

integral ring extension RCZF, and a prime ideal P of R having in-

finite rank, it can happen that in T each prime ideal lying over P

has finite rank.

By the rank (or height) of a prime ideal P in a commutative ring R

is meant the maximal length of descending chains of prime ideals of R

starting with P. Thus P has rank n if there exists a descending chain

P = PoDPiD ■ • • Z)Pn, but no such chain of longer length; and P

has infinite rank (or rank oo ) if there exist arbitrarily long chains of

primes descending from P. Let RET be a pair of commutative rings

(having a common identity). One says that the going up property

(GU) holds for the pair RET if whenever PEP o are prime ideals in

R and Ç is a prime of T such that QC\R = P, then there exists a prime

Ço in T such that QEQo and QQC\R = P0. It is well known that if T is

integral over R, then GU holds for the pair RET; and it can be readily

seen that ii RET satisfies GU and P is a prime ideal in R of rank n,

then there exists in T a prime ideal Q such that Q has rank ^n and

Qf~\R = P [3, Theorem 46, p. 31]. We show, however, that this result

cannot be extended to primes of rank oo even for R an integral domain

and T the integral closure of R. Of course GU insures that there can

be no fixed bound on the ranks of the primes of T lying over a rank oo

prime P of R. Thus in our example there must be infinitely many

primes of T lying over P. In particular, T cannot be a finite R-

module [l, p. 40].

The idea involved in our construction may be stated as follows.

Lemma. Let R be a quasi-local domain with maximal ideal P and

quotient field K. Assume thai for each positive integer n there exists a

valuation ring of K containing R and having rank n, but that R is con-

tained in no valuation ring of K having infinite rank. Let T be the

integral closure of R. If T is a Prüfer domain, then P has infinite rank

but each prime ideal of T has finite rank.

Proof. If Q is a prime ideal of T, then the localization Tq is a
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valuation ring and the rank of the prime ideal Q equals the rank of

the valuation ring TQ. Thus each prime of T has finite rank and by

intersecting chains of primes of T with R, we see that P has infinite

rank.

Construction of the example. Let k be an arbitrary field and let

{xi},0!,! be a collection of indeterminates over k. We construct a rank

one valuation ring Vi on the field K = kixi, x2, • ■ ■ ) such that Vi has

the form k + Mi where Mi is the maximal ideal of Vi. This can be

done, for example, by mapping the se< onto rationally independent

real numbers and then extending this map to a valuation of K

trivial on k. The x, having rationally independent values assures that

k maps isomorphically onto the residue field of V\ and hence that

Vi = k + Mi. For each integer w^2, let Ln denote the field

k({xi\i^n or i^2n}). Thus K = Ln(xn+x, • • ■ , x2n-x) and xn+i, • • • ,

x2n-i are algebraically independent over L„. Consider the valuation

ring ViC\Ln. By mapping xK+i, • • • , x2n-i onto suitably chosen ele-

ments of a suitable totally ordered abelian group containing the

value group of Vn we can obtain a valuation ring Vn of K such that:

(1) Vnr\Ln=VlC\Ln.

(2) Vn has rank n.

(3) Vn has the form k + Mn where Mn is the maximal ideal of Vn.

See, for example, [l, Proposition 1, p. 161].

Let P = (")," i Mi and let R — k+P. We note that R is a quasi-local

domain with maximal ideal P. For if a is a nonzero element of k and

mEP, then (a+m)~1=or1+m', where m'= — m/a(a+m)EMi for

each i, so m'EP- Let T be the integral closure of R.

Claim. T is a Prüfer domain with quotient field K, T=C\?Li Vi,

and no valuation ring between T and K has infinite rank.

Proof. Let Kn = k(xi, ■■ ■ , xn), Rn = Ri~\Kn, and let Tn be the

integral closure of P„. Note that for s^n, V,r\Kn= ViC\Kn. Hence

Rn = k + ( n MíC\kX

We show that T^VltZl 7<AX». If yE^ïll V^Kn then there
exists aiEk such that y — aiEMi, for each i such that lgt<rc. It

follows that Yij-x (y-ai)E^Zl MiC^KnERn so y satisfies an

equation of integral dependence over R„. Thus Tn is a finite inter-

section of valuation rings of the field Kn. Hence Tn is a Prüfer domain

with quotient field Kn and each valuation ring containing Tn contains

some Vi(~\Kn [l, p. 132-134]. It follows that r = Ut"i T, is also

Prüfer [2, p. 260], T has quotient field K, and  P=ni°1 Vi.  Now
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suppose IF is a valuation ring between T and K. Since W contains

Tn, IF contains some Vii~\Kn. If W contains Vi(~\Kn for all », then W

contains Vi so either W= Fxor W = K. If Vir\Kn <$.W, then for s |ä»,

let W. = WC\K.. We know that VjC\K.CW. for some j<s. But, for

iàw, V/~s\K,r\Kn= ViC\Kn, so W, is contained in V/^K, for some

j<n. Since Fy has rankj, we see that IF, has rank <«. It follows that

W= U,™=» W, also has rank less than n.
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