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COGENERATOR ENDOMORPHISM RINGS......... -   -

RONALD L. WAGONER1

Abstract. If R is a ring and P is a finitely generated projective

right .R-module, what properties of R does the i?-endomorphism

ring of P inherit? Rosenberg and Zelinsky have shown that if R is

quasi-Frobenius, and P also has every simple epimorphic image

isomorphic to a submodule, then the .R-endomorphism ring of P is

also quasi-Frobenius. In this paper we show that if R is a cogenera-

tor ring, and P is a finitely generated projective right .R-module

with every simple epimorphic image isomorphic to a submodule of

P, then the R-endomorphism ring of P is also a cogenerator ring.

0. Introduction. If a right P-module Pn is a progenerator, and

S = End/e(P), then R and S are categorically equivalent. However, if

Pr is just finitely generated projective, surprisingly little is known

about S.

In this connection, Rosenberg and Zelinsky [5] have shown that

if R is quasi-Frobenius and Pr is a finitely generated projective right

P-module with every simple epimorphic image isomorphic to a

simple submodule, then Ends(P) is also quasi-Frobenius. We call a

right P-module Mr an RZ module if every simple epimorphic image

of Mr is isomorphic to a simple submodule of Mr.

In this paper we show

Theorem. If R is a cogenerator ring and PR is a finitely generated

projective RZ module, then Endfi(P) is also a cogenerator ring.

1. Cogenerator endomorphism rings. Throughout this paper R

will denote an associative ring with identity, and / will denote its

Jacobson radical.

We adopt the standard notation that Mr (rM) means M is a right

(left) P-module, and NR<MR means NR is a submodule of Mr. For

IB <RR and RI'<RR,

Ib(Ih) = {x E it | xi = 0},       rR(Rr) = {x E it | I'x - 0}.
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A ring R is a cogenerator ring if rR and Rr are cogenerators ;

equivalently, R is a cogenerator ring if rR and Rr are injective and

for each rKrR and for each IR<RR, lRrR(RI)=Rl and rRlR(I'H)

=n [3].
Onodera [3] shows that if i? is a cogenerator ring, then R is semi-

perfect. Hence

n n

RR ~ © to,-    and    i?« ~ 0 e.Ä
i=i <-i

where {ei, ■ ■ ■ , en} is an orthogonal collection of primitive idem-

potents. Since a module rM is a cogenerator if, and only if, rM con-

tains a copy of the injective envelope of each simple left i?-module

[4, Lemma l], rR and Rr contain copies of the injective envelope of

each simple left and right i?-module respectively. Now let r U and

r U' be simple and let E(R U) and E(R U') be their injective envelopes.

Then rU^rU' if, and only if, E(rU)~E(rU'). Hence, a simple

counting argument shows that if R is a cogenerator ring and

{/i> ' ' " > /*} is a basic set of primitive idempotents for R (for each

primitive idempotent e of R, Re is isomorphic to exactly one of

Rfi, ■ ■ ■ , Rfk), then each Rfi has a simple essential socle and there

exists a permutation a of {l, • • • , k} such that

soc(Rfi) ~ Rf,d)/Jfc(i).

1.1. Proposition. Let Rbe a cogenerator ring and let e be a primitive

idempotent in R. Then soc(eRR)c±fR/fJ if, and only if, soc(«2?/)

~Re/Je.

Proof. Let soc(eR)~fR/fJ. Then / is also a primitive idempotent.

Suppose Re/ Je~soc(Rg) and let ( )* denote HomB( , R). Then

Re -> Re/Je -> 0

is exact, and rR is injective, so

0 -► (Re/Je)* -^ (Re)*

is exact. Hence soc(eR)~(Re/Je)* (duals of simples are simple [2,

Theorem 2]). So (Re/Je)*~(soc(Rg))*~soc(eR).

Since 0—>soc(i?g)—>Rg is exact, (Rg)*^>(soc(Rg))*—>0 is also exact.

Hence gR/gJ~(soc(Rg))*~soc(eR)~fR/fJ and gRc^fR so Re/Je

~soc(.R/).

By symmetry we get the converse.

If R is semiperfect and Pr is finitely generated projective, then

PÄ~ ©Jli e¡R with each e¡ a primitive idempotent of R. In this case
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the basic submodule of Pr, denoted by B(P), is

B(P) = éfiR
i-i

with each fiE{ex, • • • , em} and for each jE{l, • • • . m}, e,R is

isomorphic to exactly one of fxR, • • • , ftR- Since R is semiperfect,

the basic submodule is unique up to isomorphism, and is isomorphic

to a direct summand of R. We will write B(P) =fR when B(P)c^fR

and / is an idempotent in R. If e is an idempotent of R and B(eR)

= eR, we will say e is a basic idempotent.

1.2. Corollary. Let R be a cogenerator ring and let e be a basic

idempotent in R. Then soc (eitfi)~/i?//./ if, and only if, soc(si?/)

~i?e/'Je.

1.3. Proposition. Let R be a cogenerator ring and let Pr be finitely

generated projective. Then the following are equivalent:

(a) Pr is an RZ module.

(b) B(P)=eR and soc(eR)~eR/eJ.

(c) B(P) =eR and soc (Re)~Re/Je.

(d) Hom/e(P, R) is an RZ module.

Proof. (a)<=»(ô): Pr is an RZ module if, and only if, B(P) =eR is

an RZ module. A simple counting argument shows cRr is an RZ

module if, and only if, soc(eR)~eR/eJ.

(b)<=>(c): 1.2.

(c)<=>(d): Same as (a)<=>(b), since B(P)—eR if, and only if,

5(HomÄ(P, R))=Re.

1.4. Theorem. Let R be a cogenerator ring and let PR be a finitely

generated projective RZ module. Then End«(P) is also a cogenerator

ring.

Proof. Let

n

P~($eiR    and    B(P) = eR = exR ® ■ ■ ■ ® ekR
i=i

with each e¡ a primitive idempotent.

By [l, Theorem 1.5] eRe and End« (P) are categorically equivalent,

hence we need only see that eRe is a cogenerator ring.

Now, eRe^i ©*=i eRei and each eRd is indecomposable since

eRe{ ~eR® Ret
R

and
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k k

0 i?e¿ ~ 2?e ~ i?e ® eR ® i?e ~ 0 Re ® eR ® Re{.
«=i <-i

Let 0¿¿eM<eRe¡, then Q7íReM<ReRei = Rei. Hence soc(i?e<) <ReM

and so e-soc(i?e;) <eReM = eM. Since soc(Re)c^.Re/Je, e-soc(Reî) ¿¿0.

Hence, for each i—l, ■ ■ ■ , k, e-soc(i?e<) is a simple essential sub-

module of eRd. Let E[e-soc(Re¡)] be the injective envelope of

e-soc(Rei), then

eR.
¿=1 A

eRe < 0 E[e-soc(Rei)] < IJ eR-

(If rR is a cogenerator then eÄ«ei?e is also a cogenerator since

0 -► 2?e ® eM -> u Ä

exact, gives

0 -* ei? ® Re ® eM -> ei? <g> ü ^

exact, and eR ®Re ®eM~eM and ei? ® Hi?~Hei?.)

Let e = (era)a s ¿ and let Lr be the submodule of ei?s generated by

{era\aEA}. Then let fEHorn«(ei?/L, i?). Now, eR/L=(e+L)eR

and L = eL+L=(e+L)eL so 0=/(0) =f(e+L)eL hence eR-f(e+L)eL

= 0. But then eR-f(e+L)e-e = 0 in IX* e^. so ei?-/(e+L)e = 0. Since

soc(Re)~Re/Je, R-f(e+L)e = 0, so /(e-f-Z,)e = 0=/(e+L) and so

/ = 0. Now, Homie(ei?/Z,, i?)=0 and í?b is a cogenerator, so eR = L.

Hence there exist elements Xi, • • • , xm in R such that

m

i—1 .

Let 7T< be the projection of JI¿ ei? onto the ith coordinate then

m

y^ 7r,x,e : IT ei? —» ei?e
i-l A

via

m

(eVa)aeA —* ]C eVi*,e

splits the embedding of eRe in JJa ei?. Hence eRe is a direct summand

of   0f_i E[e-soc(i?e¿)] and so is injective and contains a copy of

each simple left ei?e-moduIe. Hence, eReeRe is an injective cogenerator.

Now, using Proposition 1.3, we can  repeat the above arguments
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on the opposite side with Re, and get eReeRe is an injective cogen-

erator.
.
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