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A GENERALIZATION OF A THEOREM OF JACOBSON

SUSAN MONTGOMERY

Abstract. A well-known theorem of Jacobson asserts that a

ring R in which x"(a!» =x for each x in R must be commutative. This

paper gives a description of a ring with involution in which the

above condition is imposed only on the symmetric elements. In

particular, if R is primitive, R is either commutative or the 2X2

matrices over a field, and, in general, any such R is locally finite

and satisfies a polynomial identity of degree 8.

A well-known theorem of Jacobson asserts that a ring R in which

xn(x)—x for eacn x in R, n(x) an integer greater than 1, must be

commutative [5, p. 217]. In this paper we answer the following ques-

tion: What can be said about a ring with involution in which the

above condition is imposed only on the symmetric elements? If R is a

division ring, then I. N. Herstein and the author have shown that the

ring still must be commutative [4]. However, as was pointed out in

[4], it is not difficult to see that, in general, such a ring need not be

commutative. For, consider the 2X2 matrices over a finite field of

characteristic not 2 under the involution

/a    ß\* =  /     8    - ß\

\y    0/ \— y       a).

The ring is certainly not commutative, but the symmetric elements

satisfy sn(')=s for all symmetric elements 5. We show that this ex-

ample (or other examples built up from 2X2 matrix rings) is basically

the only alternative to the algebra being commutative, in the case

that the characteristic is not 2.

The proofs depend heavily on the following results of J. M. Osborn

[9]; it is interesting to note that in his proofs Osborn needed the re-

sult of I. N. Herstein and the author on division rings [4].

Definition. Let A be a power-associative ring. Then A is periodic

if Ä *<*) = x for all xEA.

Proposition (Osborn). Let $ be a subfield of the algebraic closure of

the integers mod p for some p7£2, and let li be a nonsquare in €». Let $2

denote the ring of 2X2 matrices over <$, $2 denote the same set under the
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Jordan product x o y = %(xy-\-yx). Then the Jordan subalgebra of $2

consisting of the set

{(a    ßß\ )

J=\(ß     Ja'^G$|

is a simple Jordan periodic ring of capacity 2. Conversely, every simple

Jordan periodic ring of capacity 2 and characteristic not 2 is isomorphic

to such an algebra J for some choice o/i».

Theorem (Osborn). A simple Jordan periodic ring of characteristic

not 2 is either afield or a Jordan ring of capacity 2. Any Jordan periodic

ring of characteristic not 2 is a subdirect sum of simple Jordan periodic

rings.

We also use a theorem of Martindale [ó] concerning Jordan homo-

morphisms:

Theorem (Martindale). Let A be a ring with involution such that

(1) A contains 2 nonzero orthogonal symmetric idempotents ei, e2

whose sum is 1 ;

(2) AijAji = Aii,i = \, 2, whereAij^eiAer,

(3) A a equals the associative subring generated by 5, = SC\A ¡,, i = 1,2.

Let <pbe a Jordan homomorphism of the symmetric elements S of A into

an arbitrary ring R whose characteristic is not 2. Then <j> can be extended

uniquely to an associative homomorphism of A into R.

The symmetric elements of a ring R with an involution * will be

denoted by S.

The first lemma establishes a simple identity.

Lemma 1. If R is a ring of characteristic not 2, then the product

iab — ba)2= [a, b]2 may be written in terms of the Jordan product

x oy = %(xy+yx).

Proof. It is not difficult to verify that

[a, b]2 = 4(a o b)2 - 4a o (b2 o a) - 46 o (a2 o b) + 4(a2 o b2).

We are now able to completely describe the case of a simple ring

which is finite-dimensional over its center.

Lemma 2. If R is a simple ring with * of characteristic not 2, finite-

dimensional over its center Z, and such that snM =s for all s ES, then R is

a field or a 2X2 matrix ring over a field of characteristic p^O.

Proof. We first show that dimzi?^4. Assume that dimzi?> 4. Then

by a theorem of Herstein [3, p. 10], the subring generated by S is all
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of R. It is also true that 5 is a simple Jordan ring [3, pp. 27, 32 ]. Since

5 is periodic, by Osborn's results either 5 is a field or S~J as described

in the proposition.

First assume that S^JQ$2. Then using A =4>2 with ci = (0 o) and

e2=(oî). we see that A satisfies the hypotheses of Martindale's the-

orem. Thus, the Jordan isomorphism <p:J-+S may be extended to an

associative homomorphism </»i of "i>2 into R. Since <ï>2 is simple, <f>x is

one-to-one. But since 5 generates R, tpx is also onto. Thus, i?:^ï>2, so

dimzi? ^ 4, a contradiction.

Now say that 5 is a field. Let e be the unit for S; we show that in

fact e is a unit for R. For any sES, so e = \(se+es) =s; that is,

se+es = 2s, all s£S. Thus,

(se — es)e + e(es — se) = 2(se — es).

Simplifying, this yields se —es. But then we get 2es = 2s = 2se, and so

se = 5 = es. Since S generates R, e is the unit for R.

We are now able to show that every nonzero symmetric element is

invertible in R. For, choose st* 0 in 5 and let r be its Jordan inverse in

S. Thus, r o s = s or = e. We know that s" = 5, for some n ; since 5 is a

field, o is associative and thus,

e = iOf =s"or= (s"~1 os)or = sn_1 o(jor) = s"-1 o e = sn~l.

Thus, 5 is invertible. By a theorem of Osborn [8], if R is a simple ring

with involution of characteristic not 2 such that every nonzero

symmetric element is invertible, then either R is a division ring or

dimzi?^4. If R is a division ring, R must be commutative [4] and so

R = Z. In either case, dimzi?^4, and we have a contradiction. Thus,

dimzi?i=4, and so R must be a field or the 2X2 matrices over a field.

We can now characterize a primitive ring satisfying our condition.

Theorem 1. If Ris a primitive ring with involution of characteristic

not 2 such that snW =s for all s ES, then R is afield of finite character-

istic or the 2X2 matrices over such afield.

Proof. As in Lemma 2, 5 is a periodic Jordan ring. Thus, by Os-

born's theorem, 5 is a subdirect sum of fields and periodic Jordan

rings of capacity 2. Let Sa be any summand.

We claim that in each Sa, the elements satisfy the identity

[[a, b]2, c]2 = 0, all a, b, cESa (by Lemma 1 this identity may be ex-

pressed in terms of the Jordan product). This is trivial if Sa is a field,

so assume that Sa has capacity 2 ; by Osborn's proposition Sa consists

of the symmetric elements in a 2X2 matrix ring. If a and b are any

two matrices in Sa, it is easy to see that (ab — ba)2 is in the center of

Sa; thus, [[a, b]2, c]2 = 0 for any cESa.
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Since 5 is a subdirect sum of the Sa, we have that [[a, b]2, c]2 = 0

for all a, b, cES. This means that 5 satisfies a polynomial identity.

From results of Herstein [2] and Martindale [7], the entire ring R

must satisfy a polynomial identity. Since R is primitive, R must be

simple and finite-dimensional over its center by a well-known result of

Kaplansky [5, p. 226]. The theorem is now proved by applying

Lemma 2.

We now proceed to the semisimple case. However, it is now neces-

sary to assume, in addition, that R is an algebra.

Lemma 3. If R is a semisimple algebra with involution over afield F of

characteristic not 2 such that s"(s> = s for all s ES, then R is a subdirect

sum of fields and 2X2 matrix rings over fields of finite characteristic.

Proof. Since R is a subdirect sum of its primitive images, it will be

enough to show that every primitive image of R is a field or a 2X2

matrix ring. Let P be a primitive ideal of R.

Now if P*ÇZP, then R/P has an induced involution and so is a

primitive ring satisfying the hypotheses of Theorem 1. Thus, R/P is a

field or a 2 X2 matrix ring.

If P*Ç£P, then P+P*/P is a nonzero two-sided ideal of R/P, so is

itself primitive with the same vector space and commuting ring as

R/P. Choose xEP+P*;x = a+b, where aEP, bEP*. Thus, b*EP-

Now b+b* =x + ib*—a)=x (mod P). Thus, every element x of

P-\-P*/P is the image of a symmetric element of R, and so satisfies

£»(*) =x. By Jacobson's theorem P-\-P*/P is commutative, and thus

is a field. By looking at the action of R/P and P-\-P*/P, we see that

R/P is also a field.

Lemma 4. Let R be an algebra with * over a field of characteristic not

2 such that snM = 5, all s ES. If J(i?) is the radical of R, then

(1) JiR)3 = iO);
(2) xEJ(R) impliesx2 = 0.

Proof. First of all, Si\J(R)=0. For if sESC\J(R), s" = s, and

thus sn_1 is an idempotent in J(R), which is impossible. Thus, if

xEJ(R), since x+x*EJ(R)C^S, it must be that x-\-x* = 0. That is,

every element in J(R) is skew. Since the square of a skew element is

symmetric, (2) follows.

To show (1), we next see that for x, yEJ(R), xy=—yx; for,

(x-\-y)2 = 0 = x2-r-xy+yx-\-y2 = xy-\-yx. But then J(i?)3 = (0) follows

easily; if x, y, zEJ(R), (xy)z= —yxz=yzx= —xyz. Since the charac-

teristic is not 2, xyz = 0.

We now combine Lemmas 3 and 4 in the final theorem.
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Theorem 2. Let R be an algebra with involution over a field of

characteristic not 2 such that snW =s for all s ES. Let J(R) be the radical

of R. Then
(1) R/J(R) is a subdirect sum of fields and 2X2 matrix rings over

fields;

(2) J(R)3 = (0);
(3) R satisfies a polynomial identity of degree 8 ;

(4) R is algebraic over F; in fact, R is locally finite.

Proof. (1) and (2) follow immediately from Lemmas 3 and 4.

Since R/J(R) satisfies the identities of a 2X2 matrix ring, it satisfies

a polynomial identity of degree 4; since xEJ(R) implies x2 = 0, R

must satisfy an identity of degree 8.

Since the symmetric elements of R are algebraic over F, we may

apply a theorem of Baxter and Martindale [l] to see that R is

algebraic and locally finite.

Some open questions remain. First of all, are Theorems 1 and 2

valid for the characteristic 2 case? Clearly new methods would be

needed for their proofs as Osborn's theorems depend on characteristic

not 2.

Secondly, does the analog of Theorems 1 and 2 hold if the condition

is imposed on the skew elements instead? This has been shown to be

true in [4] if R is a division ring.
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