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DIRECT SUMS OF COUNTABLY GENERATED
MODULES OVER COMPLETE DISCRETE

VALUATION RINGS

CHANG MO BANG1

Abstract. Throughout this paper, R will denote an arbitrary

but fixed complete discrete valuation ring. We shall show that two

reduced Ä-modules which are direct sums of countably generated

/{-modules are isomorphic if and only if they have the same Ulm

invariants and the same basis type. This is a generalization of the

celebrated Ulm and Kolettis theorem.

1. Introduction. For the sake of convenience, a cardinal shall be

viewed as the first ordinal of that cardinality and called a cordinal.

For each countable cordinal k, define (c, R, k) to be the class of all

countably generated reduced i?-modules having torsion-free rank =S&

and D(c, R, k) to be that of all direct sums of members of (c, R, k).

Clearly, (c, R, k)ED(c, R, k)ED(c, R, co), and each member of

D(c, R, co) is a reduced direct sum of countably generated i?-modules.

Notice that countable ¿»-primary abelian groups are members of

(c, R, 0) and their direct sums are members of D(c, R, 0) where R is

the ring of ¿>-adic integers. Classifications, up to isomorphisms, of all

members of (c, R, 0), (c, R, 1), D(c, R, 0), (c, R, finite), (c, R, co) were

obtained by Ulm [12], Kaplansky and Mackey [7], Kolettis [8],

Rotman and Yen [11 ], Bang [l], respectively. In particular, we need

to recall the following for later use.

Theorem 1. Let N, N'E(c, R, co). Then, N~N' if and only if they
have the same Ulm invariant and the same height equivalence.

For the proof, see [l]. Our purpose is to classify all members of

D(c, R, w) by proving the following. This result was announced in

part in [2].

Theorem 2. Let M, M'ED(c, R, co). Then M~M' if and only if
they have the same Ulm invariant and the same basis type.
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Clearly, by adding enough zero summands if necessary, we may

write for some cordinal /

(*) M=© {Mi-.iEl}    and    X' = © {m'í'.í E /}

with all summands Af„ M[E(c, R, «). The main idea of the proof is to

show that there is a partition of / into countable subsets {I¡} such

that ®{Mi\iEIj} and © {M'f:iEI}} have the same Ulm in-

variant and the same height equivalence for each /. Then, by The-

orem 1, we have © JM,:¿G/,¡~ © {MÍ'.iEIj} for each/ and con-

sequently M~M'. This will be done through four lemmas.

2. Terminologies. For general notations and terminologies, see [4]

and [6]. Throughout this paper, p denotes a fixed prime of R. There-

fore, R is a complete local principal ideal domain with a maximal

ideal (p). Since all primes of R are associates of p, the height h(x) of x

in this paper practically means the ¿--height hp(x) of x. Let k be

a cordinal. Let Rm designate the direct sum of k copies of R,

© {R:i<k}. Each element a = {aiER'-i<k} ERik) will be viewed as

a ^-dimensional row vector (with only finitely many nonzero co-

ordinates). Let N be an i?-module having torsion-free rank k (we

shall write r(N)=k to indicate the torsion-free rank of N). Every

torsion-free basis (a maximal linearly independent subset) r\

= {yiEN:i<k} of N will be, on the other hand, viewed as a k-

dimensional column vector. Notice that the matrix product ar¡

= ^,{aiyi'.i<k} is an element of N since a is row-finite. Let m(Q)

denote the class of all row-finite square matrices over the quotient

field Q of R. A matrix yE M(Q) will be said to be integral if all entries

of y are elements of R. Let y be a kXk integral matrix of miQ).

Then, the matrix product ay is an element of R(lc) and the matrix

product ayr¡ is an element of N (the associativity holds). For each

subset AÇZN, [^4] designates the submodule of N generated by A,

and Nt the torsion part of N. Hereafter, torsion-free basis will be

abbreviated to basis.

A brief explanation about the basis types is now in order. The basis

type is a natural generalization of an equivalence relation which was

discovered by Kaplansky and Mackey [7] on the class of i?-modules

of torsion-free rank 1. Define /(i?) to be the class of all sordinal

(ordinal or » ) valued functions on i?w) for all cordinals k. Let /,

gEfiR)- Define /~g to mean both that Dom /= Dom g = i?w) for

some cordinal k and that there is a matrix y and a diagonal matrix S,

both kXk invertible integral in miQ), such that f(ay) =g(ctb) for

every a£i?(i:). It is routine to show that ~ is an equivalence relation
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on f(R). Let N be an i?-module with r(N) =k. Then, each basis r¡

defines a function gEf(R) by g(a) = hp(ar¡) for every aERilc)- We can

show that g~g' if g' is defined by another basis of N. The unique

equivalence class of /(i?)/~ determined by N is called the basis type

of N. Clearly, the basis type of N is an invariant of N. The basis type

of N coincides with the Kaplansky and Mackey equivalence relation

[7] if r(N) = l, with the Rotman strand of N [lO] if r(N)<a>, and

with the height equivalence of N [l ] if r(N) ^co.

3. Lemmas. We now initiate a series of lemmas that lead to the

proof of our theorem.

Lemma 1. Two reduced R-modules N and N' have the same basis type

if and only if
(a) r(N)=r(N')=k,and

(b) for each pair of bases r¡ and n' of N and N', respectively, there

exists a matrix y and a diagonal matrix d, both kXk invertible integral

matrices in m(Q), such that the map p defined by p(ayn) = ahn' for every

aERw is a height-preserving isomorphism from the basic free sub-

module [yn] onto the basic free submodule [bn'].

This is an obvious generalization of Lemma 4.2 in [lO]. Here, a free

submodule of N generated by a basis of N is called a basic free sub-

module of N. Clearly, yn and bn' are bases of N and N', respectively.

Particularly, v' and hn' are stacked bases in the sense of [3] since Ô is

both diagonal and integral. Furthermore, it is easy to see that the

condition (b) in the above lemma can be replaced by the following

which gives a better picture of basis types.

(b') N and N' contain basic free submodules F and F', respectively,

with a height-preserving isomorphism from F onto F'.

The following is our crucial lemma by which we can construct from

a given basis a new one which will be suitable for our purpose. The

notation itb denotes the coordinate projection from A ®B ® Conto B.

Lemma 2. Let N be a reduced R-module such that

(a) N = A ® B ® C,

(b) there are in N disjoint subsets tja and vb such that t¡a and Va^Vb

are bases of A and A ® B, respectively, and

(c) if XaE [tia] and xBE [vb], then the height h(xA+xB) is the mini-

mum of h(xA) and h(xs).

Then, if we write vb= {y i '• 1< k} where k = | vb \ = r(B),

(d) there is in m(Q) a kXk diagonal invertible integral matrix h such

that
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(e) T = wb(5vb) is a basis of B, and

(í) there is a height-preserving isomorphism p from the basis free

submodule [8vb] onto the basic free submodule [r] given by p(abi)B) =otr

for every aER(k)■

Proof. Let f be a basis of B. Then, va^JÇ is a basis of A ® B.

Therefore, for each basis element yiEwB, i<k, there is a nonzero ele-

ment diER with diyiE [va^JÇ]• Write ¿¿ = -jr,s(<fi;y¿)- Construct in an

obvious way a kXk diagonal integral matrix 8 with these ¿,'s and a

fe-dimensional column vector r with these ti's. It is clear that 5 is

invertible in m(Q), and that t is a basis of B. Thus, conditions (d)

and (e) are proved. Since [Stjb] and [t] are free submodules of N,

p: [8t]b]—*[t], given by ahr¡tf~^aT for every a£i?<<:), is an onto isomor-

phism. Now

h(otôriB) — h((ahr¡B — olt) -\- olt) ^ h(ar)

since ah-OB—arEA andarEB.On the other hand, by the condition (c),

h(ar) = h(—(aSr/B — olt) + aèns) = h(a8r¡B).

Hence, h(a8r¡B) = h(ocr) = h(p(ahr\B)), and p is height-preserving. The

proof is complete.

Recall that M= © {M{:iEl} ■ Assume that JQI and that 77 and f

are two bases of M. We define M(J)= © {Mi'.iEJ}, and v(J)

= r¡r\M(J). For each subset fo^f. we define

SM(ïo) = C\{LQI:ÇoQM(L)}

and Dv(Co) to be the minimal subset yoQy such that ^^{z} is

linearly dependent for each zGfo- A basis r¡ is said to be summandwise

if each basis element yjEv belongs to a single summand Mm) (i.e.,

y,EMi{i) for each y¡Ey)-

Lemma 3. Assume M, M'ED(c, R, co) with direct decompositions (*).

Let r(M) =r(M') =k, and let-n— {yi'.i<k} and y' — {y'( :i<k} be bases

of M and M', respectively, with v' summandwise. If JÇ^I is countable,

then there is a set T such that

(a) T is countable and JQTÇ1I,

(b) v(T) and v'(T) are bases of M(T) and M'(T), respectively, and

(c) yiEviT) if and onlyifyiEv'iT).

Proof. Let f be a summandwise basis of M. We construct for each

n <co a set /„ such that

(1) {J„:n<ct)} is an ascending chain of countable subsets of /with

Jo = /, and
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(2) if we define, for each n<co,

Kn = Jn USm{yi Ev-yle v'(Jn)}    and    Ln = Kn USu(D&(Kn))),

then   J„+x =LnyJSM'{y'iEn':yiEn(Ln)}.

Clearly, T = U {/„:«<«} satisfies the condition (a). Next suppose

yiE\n(T). Then 3\Et?(7,») for some n. Hence, y,iE\'r)'(Jn+i)Qv'(T),

and vice versa. Thus, the condition (c) is satisfied. To prove the con-

dition (b), it suffices to show that the linearly independent subset

n(T) is maximal in M(T) with respect to being linearly independent.

Assume yEM(T)—M(T)t. Then, yE\M(Jn) for some n, and hence

Dt(y)Qt(Kn). Therefore, Dv(y)çzv(Ln)Qr,(J„+i)Qr,(T), which im-

plies that n(T)\J {y} is linearly dependent. Thus, n(T) is a maximal

linearly independent subset of M(T). The proof is complete.

Assume that N, N'ED(c, R, 0). We can write, for some cordinal 7,

N= ÇB{Ni-.iEl} and N'= ©{#,':»£!}. Then, the Kolettis the-
orem [5], [8], [9] tells that N and N' have the same Ulm invariant if

and only if there is a partition of i" into countable subsets {/>} such

that N(Ij) and N'(I¡) have the same Ulm invariant for each j (con-

sequently, N^±N'). We next obtain the following lemma, which is an

analog of the Kolettis theorem in the sense that our lemma concerns

separation of the basis type, while his theorem that of Ulm invariant.

We shall write 7* for U {i, : j < i}.

Lemma 4. Assume M, M'ED(c, R, u) with direct decomposition (*).

Then, M and M' have the same basis type if and only if there is a parti-

tion of I into countable subsets {i,} such that M(I¡) and M'(I¡) have the

same basis type for eachj.

Proof. The ¿/-part is clear. For the only if-part, let r(M) =r(M')

= k. WLOG, we may assume that 7 and k are uncountable cordinals.

By Lemma 1, M and M' have bases n and n', respectively, such that

(1) »7' is summandwise, and

(2) the map p from the basic free submodule [77] onto the basic free

submodule [77'] given by p(ar¡)=ar¡' for each aERm is a height-

preserving isomorphism.

Let r < I and suppose that for each j < r there is a set i> such that

(3) {Ij'.j <r} is a family of pairwise disjoint countable subsets of I,

(4) iEI<+2 whenever i+2 ár,

(5) M(Ij) and M'(I¡) have the same basis type for each j<r,

(6) 77(70 and »;'(/*) are bases of M(P) and M'(P), respectively, for

each i ^r, and

(7) yjEv(D) if and only if y'jEv'i1*) for each i^r.
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Let us construct IT as follows. Let J consist of the first element of

I —I' and view this / as the / in Lemma 3. Then, Lemma 3 gives a

countable set Pwith JQTEI- Define Ir= T — P and r¡r =v(T) —r¡(Ir) ■

(It may happen that r)r = 0.) It is easy to show that [ij'.j < r+1}

satisfies conditions (3), (4), (6) and (7) with r + 1 in place of r. To

prove the condition (5), we notice the following facts (8), (9), and

(10).
(8) M=M(P)®M(Ir)®M(I-P+1).
(9) viP) and r)iP)\Jr]r are bases of M(P) and M(P)®M(Ir),

respectively.

(10) If xaE [viP)] and xBE for], then

hixA+xB) = hip-Ax a)+P~\xb))

for p is a height-preserving isomorphism.

It is easy from conditions (1) (2), (6) and (7) to see that p-1(x¿)

EM'iP) and p'Axb) EM'il-P). Therefore,

Hxa+xb) =min{h(p~1(xA)),h(p-1(xB))} =min{h(xA), h(xB)}.

Notice that the above conditions (8), (9), and (10) altogether

constitute the hypothesis (a), (b) and (c) of Lemma 2. Now well-

order r¡r using the cordinal kr = r(M(IT)). Then, by Lemma 2, there is a

krXkr diagonal invertible integral matrix orEm(Q) and a basis rr of

M(Ir) with a height-preserving isomorphism pr from [8rr)T] onto [rr]

given by pr(aT8rVT) = ctrTr for each arER(kr)- Let rj'r= {y'iEw''-yiErir}

and well-order v¡T precisely in the same way as rjr- By (b) of Lemma 3,

and (1) and (6), v'T is a basis of M'(Ir). Clearly, h(ar8rVr) = h(aT8Tr]r)

= h(arTr) and hence, by Lemma 1, M(Ir) and M'(Ir) have the same

basis type. Thus by transfinite induction, we can obtain the required

partition {lj'.j<l}, and the proof is finished.

4. The proof of the theorem. The only if-part is self evident. For

the ¿/-part, assume that M = © {Mi'.iEl} and Af' = © {M'^iEl},

with all summands Mit M[Eic, R, <*>), have the same Ulm invariant

and the same basis type. Then, by the Kolettis theorem, we may

assume that Mi and M'f have the same Ulm invariant for each iEI-

By Lemma 4, there is a partition of / into countable subsets {I¡} such

that Milj) and M'ilj) have the same basis type (hence, the same

height equivalence) for each /. Therefore, by Theorem 1, Milj)

c^lM'ÍIj) for each/ and consequently Mc^lM'. The proof is complete.

Recall the condition (b') of Lemma 1. The Ulm invariant deter-

mines the torsion part of M and the basis type tells how a basic free
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submodule is located in M. The following obvious corollary gives a

better picture of our theorem.

Corollary 1. Mc^M' if and only if they have isomorphic torsion

parts and they contain basic free submodules F and F', respectively, with

a height-preserving isomorphism from F onto F'.

Rotman and Yen [ll] defined two iî-modules N and N' to be

almost isomorphic in case there exist torsion i?-modules T and T' such

that N® T~N'® V. It is easy to see that N, N'ED(c, R, co) have the

same basis type if and only if they are almost isomorphic. Thus, we

have the following corollary which is Theorem l'in [11 J.

Corollary 2. Let M, M'ED(c, R, co). Then M~M' if and only if

they have isomorphic torsion parts and they are almost isomorphic.

If we notice that the completeness of R was needed nowhere except

in Theorem 1, we can give the following which may be generalized to

classes of modules over more general rings.

Corollary 3. Let R be a discrete valuation ring (not necessarily

complete) and assume that the Ulm invariants and basis types serve as a

complete set of invariants for all countably generated reduced R-modules.

Then the same result holds for all reduced direct sums of countably

generated R-modules.

The author would like to acknowledge Professor Charles K.

Megibben and the referee for valuable suggestions including the last

corollary.
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