MULTIPLIERS ON COMPACT GROUPS1

CHARLES F. DUNKL AND DONALD E. RAMIREZ

ABSTRACT. Let a compact group G act continuously both by left and right translation on a Banach space V of integrable functions on G. Then $\mathfrak{M}(V)$, the space of bounded linear operators on V commuting with right translation, contains a homomorphic image of $L^1(G)$, whose closure is exactly the set of operators on which G acts continuously. Further, this set is exactly the ideal of compact operators in $\mathfrak{M}(V)$. A restricted version holds for noncompact groups.

1. Compact groups. In this section G denotes a compact group with normalized Haar measure m, and the space $L^p(G, m)$, $1 \le p < \infty$, is briefly denoted by $L^p(G)$. We denote the algebra of finite regular Borel measures on G by M(G).

Let V be a Banach space of functions contained in $L^1(G)$ which is closed under left and right translations.

DEFINITION. We say that V is a G-G module if for each $x \in G$, $L(x)f \in V$ and $R(x)f \in V$, and $||L(x)f-f||_v \to 0$ and $||R(x)f-f||_v \to 0$ as $x \to e$ for each $f \in V$ (the translations L(x) and R(x) are given by $L(x)f(y) = f(x^{-1}y)$, R(x)f(y) = f(yx), x, $y \in G$, $f \in V$). Furthermore, we require that $||L(x)f||_v = ||f||_v$ and $||R(x)f||_v = ||f||_v$ for each $x \in G$, $f \in V$. Henceforth V will be a G-G module.

As Rieffel [2, p. 447] points out, V is also an M(G)-M(G) module, that is, V is closed under left and right convolution by measures.

Now let \hat{G} be the dual of G, namely, the set of equivalence classes of continuous unitary irreducible representations of G. For $\alpha \in \hat{G}$, let T_{α} be an element of α . Then T_{α} is a continuous homomorphism of G into $U(n_{\alpha})$, the group of $n_{\alpha} \times n_{\alpha}$ unitary matrices. Let $\chi_{\alpha}(x) = \operatorname{Trace}(T_{\alpha}(x))$, the character of α , and let W_{α} be the linear span of the matrix entry functions of T_{α} . Then χ_{α} and W_{α} depend only on α . We call an element in the linear span of $\{W_{\alpha}: \alpha \in \hat{G}\}$ a trig polynomial.

We note here for later use that $L^1(G)$ has a bounded approximate identity $\{t_i\}$ which is central, that is, $t_i * f = f * t_i$, $f \in L^1(G)$. This follows since G has a base of invariant neighborhoods of the identity.

Received by the editors April 29, 1970.

AMS 1970 subject classifications. Primary 42A18, 43A22; Secondary 46H25.

Key words and phrases. Intertwining operators, translation continuous, multiplier algebra, compact operator.

¹ This research was supported in part by NSF contract number GP-8981.

Thus $L^1(G)$ has a bounded central approximate identity consisting of trig polynomials.

For $\alpha \in \widehat{G}$, $f \in V$, we have that $f * \chi_{\alpha} \in W_{\alpha} \cap V$. Since V is left and right invariant, it further holds that $W_{\alpha} \cap V = W_{\alpha}$ or $\{0\}$.

DEFINITION. Let $\mathfrak{M}(V)$ be the space of bounded operators on V which commute with all right translations. Denote the operator norm by $\|\cdot\|_{\text{op}}$. For $\mu \in M(G)$, define the operator $j(\mu)$ on V by $j(\mu)f = \mu * f$, $f \in V$.

Note that for $T \in \mathfrak{M}(V)$, $\mu \in M(G)$, $f \in V$ that $T(f * \mu) = (Tf) * \mu$.

COROLLARY 1. The map j is a bounded homomorphism of M(G) into $\mathfrak{M}(V)$.

Now $\mathfrak{M}(V)$ is a right $L^1(G)$ -module, and the action is given by $(T \cdot g)(f) = T(g * f)$, for $T \in \mathfrak{M}(V)$, $g \in L^1(G)$, $f \in V$. That is, $T \cdot g$ is nothing but Tj(g) (operator composition).

DEFINITION (RIEFFEL [2, p. 454]). The essential part of $\mathfrak{M}(V)$, denoted by $\mathfrak{M}_{\epsilon}(V)$, is the closed span of $\{T \cdot f : T \in \mathfrak{M}(V), f \in L^{1}(G)\}$. That is, $\mathfrak{M}_{\epsilon}(V)$ is just the closed left ideal generated by $jL^{1}(G)$.

THEOREM 2 (COHEN, RIEFFEL [2, p. 454]). The space

$$\mathfrak{M}_e(V) = \mathfrak{M}(V)L^1(G).$$

For $x \in G$, let δ_x be the unit mass at x; then for $f \in V$, $\delta_x * f = L(x)f$. Now G acts in $\mathfrak{M}(V)$ by $T \mapsto Tj(\delta_x)$ for $T \in \mathfrak{M}(V)$. Our aim is to characterize those $T \in \mathfrak{M}(V)$ for which $||Tj(\delta_x) - T||_{op} \to 0$ as $x \to e$. As Rieffel [2, p. 456] observes, these operators are exactly those in the essential part of $\mathfrak{M}(V)$.

LEMMA 3. Let g be a trig polynomial on G and let $T \in \mathfrak{M}(V)$. Then $T \cdot g = Tj(g) = j(k)$ for some trig polynomial k.

PROOF. Let E be a finite set contained in \hat{G} which carries g, that is $g = \sum_{\alpha \in E} n_{\alpha} g * \chi_{\alpha}$. Thus

$$T \cdot g(f) = T \left(g * \left(\sum_{\alpha \in E} n_{\alpha} \chi_{\alpha} * f \right) \right)$$
$$= T \left(g * \left(f * \sum_{\alpha \in E} n_{\alpha} \chi_{\alpha} \right) \right)$$
$$= (T \cdot g(f)) * \sum_{\alpha \in E} n_{\alpha} \chi_{\alpha}$$

which is in V_E , the span of $\{V \cap W_\alpha : \alpha \in E\}$. Now V_E is a finite

dimensional G-G module, and $T \cdot g$ is an operator on V_E which commutes with right translation. Thus there exists a trig polynomial h such that $T \cdot g(f) = h * f$ for all $f \in V_E$. But for any $f \in V$,

$$T \cdot g(f) = T \cdot g\left(\sum_{\alpha \in E} n_{\alpha} \chi_{\alpha} * f\right) = j(h) \left(\sum_{\alpha \in E} n_{\alpha} \chi_{\alpha} * f\right)$$
$$= j\left(h * \sum_{\alpha \in E} n_{\alpha} \chi_{\alpha}\right)(f). \quad \Box$$

THEOREM 4. With hypotheses and notation as stated above, $\mathfrak{M}_{e}(V)$ = closure($jL^{1}(G)$).

PROOF. If $g \in L^1(G)$, then by the Cohen factorization theorem $g = g_1 * g_2$, g_1 , $g_2 \in L^1(G)$. Thus $j(g) = j(g_1)j(g_2) = j(g_1) \cdot g_2 \in \mathfrak{M}(V) \cdot L^1(G)$. (Alternatively, in a not so high-powered fashion, observe directly that $||j(g)j(\delta_x)-j(g)||_{op} \leq ||g * \delta_x - g||_1 = ||R(x^{-1})g - g||_1 \to 0$ as $x \to e$.) Thus $jL^1(G) \subset \mathfrak{M}_e(V)$, a closed set.

Conversely, let $T \in \mathfrak{M}_{e}(V)$, then $T = S \cdot f$ for some $S \in \mathfrak{M}(V)$, $f \in L^{1}(G)$. Let $\{t_{\iota}\}$ be the bounded central approximate identity consisting of trig polynomials mentioned above. Then

$$||T - T \cdot t_{\iota}||_{\text{op}} = ||Sj(f) - Sj(f * t_{\iota})||_{\text{op}}$$

$$\leq ||S||_{\text{op}}||f - f * t_{\iota}||_{1} \stackrel{\iota}{\to} 0.$$

By the lemma, $T \cdot \iota \in jL^1(G)$. \square

THEOREM 5. The ideal of compact operators in $\mathfrak{M}(V)$ is equal to $\mathfrak{M}_e(V)$.

PROOF. By the above, $\mathfrak{M}_e(V) = \operatorname{closure}(jL^1(G))$. If $f \in L^1(G)$ then $||j(f)-j(f*\iota_i)||_{\operatorname{op}} \leq ||f-f*\iota_i||_{\overset{\iota}{\longrightarrow}} 0$. Each $j(f*\iota_i)$ is an operator of finite rank, thus j(f) is compact. The fact that the set of compact operators is norm closed gives containment one way.

Recall the fact that if $\{P_{\iota}\}$ is a norm-bounded net of bounded operators on a Banach space X converging strongly to the identity (that is, $P_{\iota}x \xrightarrow{\iota} x$, each $x \in X$) and if T is a compact operator on X, then $\|P_{\iota}T - T\|_{\text{op}} \xrightarrow{\iota} 0$.

Let h be a central trig polynomial, $T \in \mathfrak{M}(V)$; then j(h)T = Tj(h). In fact, if $f \in V$, then (j(h)T)(f) = h * (Tf) = (Tf) * h = T(f * h) = T(h * f). Now let T be a compact operator in $\mathfrak{M}(V)$. We will show that $||T - T \cdot t_i||_{\operatorname{op}} \to 0$ and thus $T \in \mathfrak{M}_{e}(V)$.

Let $f \in V$, then by the Cohen factorization theorem there exist $g \in L^1(G)$, $f_1 \in V$ such that $f = g * f_1$. Now

$$||j(t_{\iota})f - f||_{V} = ||j(t_{\iota} * g)(f_{1}) - j(g)(f_{1})||_{V}$$

$$\leq ||t_{\iota} * g - g||_{1}||f_{1}||_{V} \stackrel{\iota}{\to} 0,$$

thus $\{j(t_i)\}$ converges strongly to the identity in $\mathfrak{M}(V)$. So $||T-T\cdot t_i||_{\mathrm{op}} = ||T-Tj(t_i)||_{\mathrm{op}} = ||T-j(t_i)T||_{\mathrm{op}} \to 0$.

COROLLARY 6. For $T \in \mathfrak{M}(V)$ the following are equivalent:

- (1) $||Tj(\delta_x) T||_{op} \rightarrow 0$ as $x \rightarrow e$,
- (2) $T = S \cdot g$, some $S \in \mathfrak{M}(V)$, $g \in L^1(G)$,
- (3) $T \in \operatorname{closure}(jL^1(G))$,
- (4) T is a compact operator.

APPLICATIONS. Let $1 , and <math>V = L^p(G)$; then $\mathfrak{M}(V)$ is the multiplier algebra of $L^p(G)$. As a particular example, consider $V = L^2(T)$ (T is the circle group); then $\mathfrak{M}(V)$ is identified with $l^{\infty}(Z)$, and $\mathfrak{M}_{\epsilon}(V)$ consists of those bounded sequences $\{\phi_n\}$ for which $\sup_n |\phi_n - \phi_n e^{-inx}| \to 0$ as $x \to 0$, namely $c_0(Z)$, the sup-norm closure of $L^1(T)$. For a compact group G and $V = L^2(G)$ we get $\mathfrak{M}(V) = \mathfrak{L}^{\infty}(\widehat{G})$ (see [1]), and $\mathfrak{M}_{\epsilon}(V) = \mathfrak{C}_0(\widehat{G})$. For V = C(G), $\mathfrak{M}(V) = M(G)$ and $\mathfrak{M}_{\epsilon}(V) = L^1(G)$.

2. **Locally compact groups.** Here G will be a noncompact locally compact group, $L^1(G)$ the ideal of finite regular Borel measures absolutely continuous with respect to left invariant Haar measure. Theorem 4 does not hold in general in this context. For example, for the real line R, consider $\mathfrak{M}(L^2(\hat{R})) = L^{\infty}(R)$, then the essential part is $L_0^{\infty}(R) = L^{\infty}(R) \cdot C_0(R)$ which is strictly larger than $C_0(R) = L^1(\hat{R})^{-1}$. However it is true that $jM(G) \cap \mathfrak{M}_{\varepsilon}(V) \subset \text{closure } jL^1(G)$.

We will not require that V be a space of functions. Here V will be an isometric left G module with the action denoted xf ($x \in G, f \in V$), and $\mathfrak{M}(V)$ will denote the space of bounded operators on V. The map $j: M(G) \to \mathfrak{M}(V)$, given by $j(\mu)(f) = \int_G (xf) d\mu(x), f \in V, \ \mu \in M(G)$, is a homomorphism with $||j(\mu)||_{\mathrm{op}} \leq ||\mu||$. The essential part of $\mathfrak{M}(V)$, denoted by $\mathfrak{M}_{\bullet}(V)$, equals $\mathfrak{M}(V)(jL^1(G))$.

The following holds for $T \in \mathfrak{M}(V): T \in \mathfrak{M}_e(V)$ if and only if $||Tj(\delta_x)-T||_{op} \to 0$ as $x \to e$.

THEOREM 7. $jM(G) \cap \mathfrak{M}_e(V) = jM(G) \cap \operatorname{closure}(jL^1(G))$.

PROOF. As before it is clear that $\operatorname{closure}(jL^1(G)) \subset \mathfrak{M}_e(V)$. Now let $\mu \in M(G)$ such that $j(\mu) \in \mathfrak{M}_e(V)$; then there exist $T \in \mathfrak{M}(V)$, $g \in L^1(G)$ such that $j(\mu) = T \cdot g$. Let $\{u_i\}$ be an approximate identity in $L^1(G)$, then $\mu * u_i \in L^1(G)$ for each ι and

$$|| ||_{J}(\mu) - j(\mu * u_{\iota}) ||_{\text{op}} = || T \cdot g - (T \cdot g)(j(u_{\iota})) ||_{\text{op}}$$

$$= || Tj(g) - Tj(g)j(u_{\iota}) ||_{\text{op}}$$

$$\leq || T||_{\text{op}} || g - g * u_{\iota} ||_{1} \stackrel{\iota}{\to} 0. \quad \Box$$

COROLLARY 8. Let $\mu \in M(G)$, then the following are equivalent:

- (1) $||j(\mu * \delta_x) j(\mu)||_{\text{op}} \rightarrow 0 \text{ as } x \rightarrow e$,
- (2) $j(\mu) \in \operatorname{closure}(jL^1(G))$.

APPLICATION. For $1 , let <math>L^p(G)$ be the L^p space of left invariant Haar measure. Corollary 8 characterizes the measures which can be approximated in the L^p -operator norm by $L^1(G)$. Let V be the direct sum of all (classes of) irreducible unitary continuous representations of G; then the V-operator norm is the C^* norm $\|\cdot\|_{\hat{G}}$ of $L^1(G)$ and M(G). Thus we have another proof of our characterization of $M_0(G)$, the measures approximable in $\|\cdot\|_{\hat{G}}$ by $L^1(G)$ (see [1]).

BIBLIOGRAPHY

- 1. C. Dunkl and D. Ramirez, Translation in measure algebras and the correspondence to Fourier transforms vanishing at infinity, Michigan Math. J. 17 (1970), 311-319.
- 2. M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 36 #6544.

University of Virginia, Charlottesville, Virginia 22904