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FUNCTIONS WHICH OPERATE IN THE FOURIER
ALGEBRA OF A COMPACT GROUP

DANIEL RIDER1

Abstract. Let A (G) be the Fourier algebra of a compact group

G. It is shown that a function defined on a closed convex subset of

the plane operates in A (G) if and only if it is real analytic. This was

shown by Helson, Kahane, Katznelson and Rudin when G is

locally compact and abelian and by Dunkl when G is compact

and contains an infinite abelian subgroup. A direct proof is given

of the following lemma which is all that is needed in order to apply

the proof of Helson, Kahane, Katznelson and Rudin (|| || is the

Fourier algebra norm).

Lemma. Let r>0 and Sr be the set of f£.A(G) such thatf is real

and 11/11 = r. Then

sup||e*|| = er.
resr

1. Introduction. The Fourier algebra, AiG), of a locally compact

group G consists of those complex functions which can be written as

the convolution, / * g, of two functions/ and g in L2iG). Eymard [4]

has shown that A (G) is a subalgebra of the continuous functions on G.

When G is abelian and has dual group T, A (G) is the algebra of Fourier

transforms of the group algebra Li(r). If, in addition, G is compact

then A(G) consists of those continuous functions on G having ab-

solutely convergent Fourier series.

If F is a function defined on a subset E of the plane we will say F

operates in A(G) provided the composition F if) belongs to AiG)

whenever/£^4 (c7) and the range of/ is contained in E.

The functions that operate in AiG) when G is abelian have been

completely characterized by Helson, Kahane, Katznelson and Rudin

[5 ]. They show that a function defined on a closed convex set operates

if and only if it is real analytic. Recently this has been extended by

Dunkl [2] to compact groups which contain infinite abelian sub-

groups. In this paper we will extend it to all infinite compact groups.

Curiously it is not known whether or not an infinite compact group

must contain an infinite abelian subgroup so that our result may be a

vacuous extension of Dunkl's.
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For a compact group G let T denote the set of equivalence classes of

irreducible unitary representations of G. For aET, Ta is a repre-

sentative of the class, x<* is the character and da the degree or dimen-

sion. The Fourier series of a function/£Pi(G) is given by

/(*) ~ E ¿. Tr(AaTa(x))        (x E G)
«er

where Tr denotes the trace of a matrix and Aa is the daXda matrix

given by

I. =  [ f(x-l)Ta(x)dx

(dx is the normalized Haar measure of G).

If \Aa\ denotes the absolute value of the matrix Aa let ||/||

= E¿aTr(| Aa\). it is easy to see that A(G) consists of all / with

11/11 < ». With this norm ^4(G) is a commutative Banach algebra

having G as its maximal ideal space (cf. [3, Chapter 8]). The Arens-

Calderón-Shilov theorem shows that real analytic functions operate.

Our main contribution is the following lemma.

Lemma 1. Let r> 0 and Sr be the set offEA (G) such that f is real and

\\f\\=r.Then
sup||etf|| = er.

This lemma was shown for abelian groups in [5, Lemma 2.1] and

for compact groups with infinite abelian subgroups in [2].

Lemma 1 is all that is needed in order to apply the proof of Helson,

Kahane, Katznelson and Rudin [5] (also see 6.6.3 and 6.9.3 of [7])

to obtain

Theorem 2. Let G be compact. A function defined on a closed convex

set operates in A (G) if and only if it is real analytic.

2. The proof of Lemma 1. Henceforth G will be an infinite compact

group. Before establishing Lemma 1 we need some facts about ^4(G).

Proposition 3. Iff and gEA (G) and

(1) ff(yx)g(x)dx = 0        (y E G),

(2) ff(xy)gTx)dx = 0       (yEG),

then\\f+g\\ = 11/11 +||gl|.
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Proof. If the Fourier expansions of/ and g are given by

/(*) ~ E d, TriAaTaix))    and    ¿(se) ~ £ <*« Tr(£ar,,(x))

then the integrals in (1) and (2) are given by

(10 E da TrißUaTaiy))

and

(2') T,daTriAaB*aTaiy))

where Ba is the adjoint of the matrix Ba. Since these are zero for all y

it follows that

(3) B*aAa = AaB*a = 0.

for all «Gr. It follows from (3) that |^a+-Ba| =\Aa\ +\Ba\. Hence

l|/+*ll = ZdaTr(| Aa+Ba\) = T,daTri\ Aa\)

+ £d„Tr(|/Ja|)=||/||+y.

If G is infinite and compact it is not known whether G must contain

an infinite abelian subgroup. It does not even seem to be known

whether G must contain arbitrarily large abelian subgroups. However

we can show the following.

Proposition 4. The continuous homomorphic images of G contain

arbitrarily large abelian subgroups.

Proof. Clearly we can assume G has an exponent. The finite dimen-

sional representations of G thus have finite images [l, 36.1 ] which are

arbitrarily large. Since these images have a common exponent they

contain large ¿»-groups for some prime p by Sylow's theorem. Since a

p-group of order pn contains an abelian subgroup of order p" where

a(a + l)^2w [6, Kapital III, Satz 7.3] the proof is complete.

I am indebted to I. M. Isaacs for this proof.

For a£r, Ta is a homomorphism of G into i/(da), the group of

daXda unitary matrices. Let (Fa(«)),-,■ denote the matrix entries of

Taix). They will be called entry functions. They depend on the choice

of the representative Ta but the character ya(x) = Y.i (Tajx))u

depends only on a. Furthermore

(4) WiTcdaW = 1    and    (2\,(«))<, = 5tf

where e is the identity element of G.

Let B be a closed subgroup of G and K a closed normal subgroup

such that B/K is abelian. If Ta is an irreducible representation such
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that PJCKernel Ta then Ta(B) is abelian so that an equivalent repre-

sentation, also called Ta, can be chosen with the property that the

matrices Ta(a) are diagonal for all aEB. The diagonal entry functions

for this Ta are thus one-dimensional representations (or characters)

of B. They also can be considered as characters of B/K. Furthermore

every (one-dimensional) character of B/K arises in this way. If <j> is

such an entry function we also have

(5) 4>(ag) = <i>(ga) = 4>(a)4>(g)        (aEB, g EG).

In what follows we use the notation

*-»(*) =*(x).

If</>i, <¡>i, ■ ■ • ,<f>t are functions then for 1 ̂ i^t let

6i(x) = ¿Z <t>7i ix)<b8l (*)••• 4>,t (x),

the sum being extended over all i-tuples 1 ̂ Si<s2< ■ ■ ■ <Si^t and

all sequences of +1. 6o(x) = 1.

Proposition 5. Given an integer t there exist t diagonal entry func-

tions 4>i, ■ ■ • ,4>t such that for all complex numbers zo, zi, ■ ■ ■ ,zt

(6) ¿2 Zidi = Z

Proof. There is an integer N such that any locally compact

abelian group with order ^ N has t characters (pi, ■ ■ ■ , <pt such that

ifsi<52< • • ■ <Si,rx<r2< ■ • ■ <r¡and

(') 4>n 4>s2    ■   ■   ■ 0»,- <¡>n    ■   ■   ■ 4>t}    =   1

for some choice of +1 then i =j.

By Proposition 4 there is an abelian group, B/K, of order à N in

some homomorphic image of G. By the remarks above the / characters

on B/K which satisfy (7) can be extended to diagonal entry functions

on G. I claim that if it^j, Si< ■ ■ ■ <sfandri< • • • <r¡ then, for all

choices of +1,

(8)       / =  I   «ê7! iyx)<t>s2 iyx) ■ ■ • <t>H iyx)<t>r( (*)■•• 4>Tj (x)dx = 0
J o

for all yEG. For if x is replaced by xa (with aEB) in the integral of

(8) then (5) and the invariance of dx show that

/ = I<t>Sl (a) • • • <p¡i ia)<bri (a) ■ ■ • <f>7f (a).
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By (7) this is possible only if /= 0.

From (8) it follows at once that

/ei(yx)ej(x)dx =   I   eiiyx)dJix)dx = 0        (t j± j; y E G).
G "G

Similarly

I  eiixy)6,{x)dx = 0        ii9^i;yEG).
J a

These last equations allow us to apply Proposition 3 inductively to

the 6i in order to obtain (6).

Proof of Lemma 1. Fixr>0. Let / be an integer, let <pi, <b2, ■ ■ ■ ,<pt

be as in Proposition 5 and define

(9) /(*)--^¿*(*) + *®-
2/ j=i

/ is real and

(10) 11/11 = r.

Now if i^n^t then

(11) fix) - (^Xnldnix) + Bnix)

where

(12) Bnix) = (£J E <Pni*) ■ ■ ■ *"(*) i

this sum is over all »-tuples (si, • • • , sn) such that at least two of the

Si are the same and is over all choices of + 1.

Now since \\<bi\\ = 1 and the sum in (12) has (2¿)n —2"m!(J,) elements,

it follows that

On the other hand, the sum which gives 0„ has 2n(/n) elements

so that

(14) 0,   è en(e) = 2■0-
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It then follows from (11), (6), (14), (10) and (13) that

,   iif)n\\

I     0

NI   ^ ll/nll
n\        ¡+i    »!

^ ti-Xi'f) - ± -Ti —îl—1 - e -
o  \2i/      Vk/       T   »IL        (í-n)!í»J       «TÍ  »!

-?(t)'c:
Thus, letting Sr = {/'./ is real ; ||/|| = r}, we obtain

■

sup||e^|| è sup 2 ¿( — ) (    ) — er = er.
/esr i o  \ t / \nj
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