COMMUTING OPERATOR SOLUTIONS OF ALGEBRAIC EQUATIONS

R. C. RIDDELL AND R. B. INSLEY

ABSTRACT. Let G(w, z) be a complex polynomial, and S a bounded operator of scalar type on a complex Banach space, whose spectrum avoids the points λ for which $G(\lambda, z) = 0$ has multiple roots z. The form of a bounded operator T which commutes with S and satisfies G(S, T) = 0 is established.

1. Introduction. Fix a Banach space X over the complex numbers C, and let $\mathfrak B$ denote the Banach algebra of all bounded linear operators on X. Given $S \subset \mathfrak B$ of scalar type, and given a polynomial in two indeterminates

$$G(w, z) = a_n(w)z^n + \cdots + a_1(w)z + a_0(w)$$
 $(a_i(w) \in \mathbb{C}[w]),$

we seek operators $T \in \mathfrak{B}$ such that

(E)
$$T$$
 commutes with S and $G(S, T) = 0$.

Denoting the spectrum of S by σ , we assume:

(A) For each
$$\lambda \in \sigma$$
, the polynomial $G(\lambda, z)$ has n distinct complex roots $t_1(\lambda), \dots, t_n(\lambda)$.

We shall establish:

THEOREM. Notation and assumptions as above, there exist $T_1, \dots, T_n \in \mathbb{G}$ satisfying (E), and having the following property: $T \in \mathbb{G}$ satisfies (E) if and only if there exist $F_1, \dots, F_n \in \mathbb{G}$ such that

 F_i commutes with S,

(D)
$$F_i^2 = F_i, F_i F_j = 0 for i \neq j, \Sigma_i F_i = I,$$
$$T = \Sigma_i T_i F_i.$$

An operator S is of scalar type [1, p. 332] if S admits a resolution of the identity $E(\cdot)$, and if moreover S can be recovered from $E(\cdot)$ by integration over σ :

$$S=\int \lambda E(d\lambda).$$

Received by the editors December 31, 1969 and, in revised form, May 20, 1970. AMS 1969 subject classifications. Primary 4740, 4790.

Key words and phrases. Scalar-type operator, algebraic operator equation.

In particular, a normal operator on a Hilbert space is of scalar type. In the theorem, G need not be irreducible, but by (A) no repeated factors are permitted in the prime decomposition of G. The idempotents F_i are not asserted to be values of $E(\cdot)$, and indeed need not be, if S has multiplicity greater than 1.

Foguel [2] proved this theorem for the special case G(w, z) = g(z) - w, g a complex polynomial, and we imitate his proof. For a given solution T of (E), the main step in constructing the F_i is to check that $G_2(S, T)$ is invertible, where $G_2(w, z) = \partial G(w, z)/\partial z$. In Foguel's case, $G_2(w, z) = g'(z)$ is independent of w, and the existence of $g'(T)^{-1}$ follows immediately from (A) and the spectral mapping theorem. The general proof below uses maximal ideals, and we are indebted to the referee for a substantial simplification of our original argument.

2. **Proof of the theorem.** Let \mathfrak{M} denote the Banach algebra of all essentially bounded measurable complex functions on σ .

LEMMA 1. There exist $t_1, \dots, t_n \in \mathfrak{M}$ such that, for each $\lambda \in \sigma$,

- (1) $G(\lambda, z) = a_n(\lambda) \prod_j (z t_j(\lambda)),$
- (2) $G_2(\lambda, z) = a_n(\lambda) \sum_i \prod_{j \neq i} (z t_j(\lambda)).$

PROOF. Let K be an oriented cut in C joining the singularities $\lambda_1, \dots, \lambda_k$ of the algebraic function(s) determined by G. Then the roots $t_i(\lambda)$ can be chosen to be holomorphic in C-K. If each t_i is analytically continued to $K' = K - \{\lambda_1, \dots, \lambda_k\}$ from the left, say, then the extended t_i are defined and locally bounded on $C' = C - \{\lambda_1, \dots, \lambda_k\}$, have, at worst, jump discontinuities from the right along K', and have for values $\{t_i(\lambda)\}$ precisely the set of roots of $G(\lambda, z)$, for each $\lambda \in C'$. Assumption (A) provides that $\sigma \subset C'$, and in particular that $a_n(\lambda) \neq 0$ for $\lambda \in \sigma$; hence restricting the t_i to σ establishes (1), from which (2) is immediate.

- By [1, Lemma 6, p. 341], the map $\mathfrak{M} \to \mathfrak{B}$ given by $f \mapsto f(S) = \int f(\lambda)E(d\lambda)$ is a continuous algebra homomorphism. Clearly it extends by $z\mapsto z$ to a homomorphism $\mathfrak{M}[z]\to \mathfrak{B}[z]$, which carries (1) and (2) over to relations
 - (3) $G(S, z) = a_n(S)\Pi_j(z T_j),$
 - (4) $G_2(S, z) = a_n(S) \sum_i \prod_{j \neq i} (z T_j),$

in which we have set $T_j = t_j(S)$. Then each T_j commutes with S and, by (3), obeys $G(S, T_j) = 0$.

Now suppose that T satisfies (E). Then in particular T must commute with $E(\cdot)$ [1, Theorem 5, p. 329] and hence with the T_j , so that $z \mapsto T$ defines a homomorphism $\mathfrak{B}[z] \to \mathfrak{B}$, which carries (3) and (4) to

- (5) $0 = G(S, T) = a_n(S)\Pi_j(T T_j),$
- (6) $G_2(S, T) = a_n(S) \sum_i \prod_{i \neq i} (T T_i).$

LEMMA 2. $G_2(S, T)^{-1}$ exists in \otimes and commutes with S and T.

PROOF. Let $\mu: \alpha \to C$ denote any nonzero continuous homomorphism, where $\alpha \subset \mathfrak{B}$ is the (commutative) full algebra generated by $E(\cdot)$ and T [1, p. 342]. Then $\lambda = \mu(S) \subset \sigma$, for otherwise $(S - \lambda I)^{-1} \subset \mathfrak{A}$ by definition of "full algebra", and $I = (S - \lambda I)(S - \lambda I)^{-1}$ would go by μ to 1 = 0. Hence $G(\lambda, \mu(T)) = \mu(G(S, T)) = 0$, and then $\mu(G_2(S, T)) = G_2(\lambda, \mu(T)) \neq 0$, by (A). Thus $G_2(S, T)$ lies in no maximal ideal of α , so is invertible in α .

Now for each i, set

(7)
$$F_i = G_2(S, T)^{-1} a_n(S) \prod_{j \neq i} (T - T_j).$$

To verify (D), notice that $\sum_i F_i = I$ follows from (6). For $i \neq j$, $F_i F_j$ contains each factor $T - T_k$ at least once, so vanishes by (5); and then $F_i^2 = F_i(\sum_j F_j) = F_i$ follows. Similarly (7) and (5) give $(T - T_i) F_i = 0$ for each i, and summing yields $T = \sum_i T_i F_i$, to conclude the "only if" part of the proof.

Conversely, suppose that F_1, \dots, F_n obey (D). Then each F_i commutes with $E(\cdot)$, hence with each T_j , and $T = \sum_i T_i F_i$ commutes with S. Moreover, it follows by induction that $T^k F_i = T_i^k F_i$, hence that $G(S, T) F_i = 0$, for each i. Summing yields G(S, T) = 0, to conclude the "if" part.

REFERENCES

- 1. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. MR 16, 142.
- 2. S. R. Foguel, Algebraic functions of normal operators, Israel J. Math. 6 (1968), 199-201. MR 38 #1550.

University of British Columbia, Vancouver, British Columbia