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COMMUTING OPERATOR SOLUTIONS OF
ALGEBRAIC EQUATIONS

R. C. RIDDELL AND R. B. INSLEY

Abstract. Let G(w, z) be a complex polynomial, and 5 a

bounded operator of scalar type on a complex Banach space,

whose spectrum avoids the points X for which G(\, z) =0 has mul-

tiple roots z. The form of a bounded operator T which commutes

with 5 and satisfies G(S, T) =0 is established.

1. Introduction. Fix a Banach space X over the complex numbers

C, and let (B denote the Banach algebra of all bounded linear opera-

tors on X. Given SE(& of scalar type, and given a polynomial in two

indeterminates

G(w, z) = an(w)zn + ■ ■ ■ + ai(w)z + a0iw)        (a,-(w) G C[w]),

we seek operators TE& such that

(E) T commutes with S and G(S, T) = 0.

Denoting the spectrum of 5 by <r, we assume:

For each X G o-, the polynomial G(X, z) has

n distinct complex roots ti(\), ■ • • , /„(a).

We shall establish :

Theorem. Notation and assumptions as above, there exist Ti, • • ■ ,

T„E(& satisfying (E), and having the following property: TE<$> satis-

fies (E) if and only if there exist Fi, ■ ■ • , FnE<S> such that

F i commutes with S,

(D) F\ = Fi,       FiFj = 0   for i * j,        2^ = /,

T = 2,r,Fi.

An operator 5 is of scalar type [l, p. 332] if S admits a resolution

of the identity E(-), and if moreover 5 can be recovered from E(-)

by integration over <r:

S = j \E(d\).
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In particular, a normal operator on a Hubert space is of scalar type.

In the theorem, G need not be irreducible, but by (A) no repeated

factors are permitted in the prime decomposition of G. The idempo-

tents Fi are not asserted to be values of E(-), and indeed need not

be, if 5 has multiplicity greater than 1.

Foguel [2] proved this theorem for the special case G(w, z) =g(z)

—w, g a complex polynomial, and we imitate his proof. For a given

solution T of (E), the main step in constructing the F< is to check

that G2(S, T) is invertible, where G2(w, z) =dG(w, z)/dz. In Foguel's

case, Gi(w, z) =g'(z) is independent of w, and the existence of g'(T)~l

follows immediately from (A) and the spectral mapping theorem.

The general proof below uses maximal ideals, and we are indebted

to the referee for a substantial simplification of our original argu-

ment.

2. Proof of the theorem. Let 9TC denote the Banach algebra of all

essentially bounded measurable complex functions on <r.

Lemma 1. There exist tx, ■ ■ • , inG9TC such that,Jeor each\Eo,

(1) G(X, z)=an(k)nj(z-tJ(\)),

(2) G2(X, z)=an(K)^iU^iiz-tjÇK)).

Proof. Let K be an oriented cut in C joining the singularities

Xi, • • • , X* of the algebraic function (s) determined by G. Then the

roots tiÇK) can be chosen to be holomorphic in C—K. If each ¿, is

analytically continued to K'=K— {Xi, • • • , \k} from the left, say,

then the extended ¿¿ are defined and locally bounded on C' = C

— {Xi, • • ■ , Xjfc}, have, at worst, jump discontinuities from the right

along K', and have for values {¿.(X)} precisely the set of roots of

G(X, 2), for each \EC. Assumption (A) provides that crEC, and in

particular that a„(X) 5^0 for XG<r; hence restricting the ¿, to a estab-

lishes (1), from which (2) is immediate.

By [l, Lemma 6, p. 341 ], the map 911—>(& given by f\->/(5)

=ff(\)E(d\) is a continuous algebra homomorphism. Clearly it ex-

tends by zi—>z to a homomorphism 9Tl[z]—>(B[z], which carries (1)

and (2) over to relations

(3) G(S,z)=an(S)Uj(z-Tj),

(4) G2(S, z) = an(S)-2iIlJ9¿i(z - T,),

in which we have set T, = tj(S). Then each T¡ commutes with 5 and,

by (3), obeys G(S, T,)=0.
Now suppose that T satisfies (E). Then in particular T must

commute with E(-) [l, Theorem 5, p. 329] and hence with the T¡,

so that Z\—>T defines a homomorphism 03[z]—>(B, which carries (3)

and (4) to
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(5) 0=G(S, T)=a„(S)Ilj(T-Tj),
(6) G2(S, T)=a„(S)2iIL*i(T-Tj).

Lemma 2. G2(S, T)-1 exists in 03 and commutes with Sand T.

Proof. Let p:&—>C denote any nonzero continuous homomor-

phism, where a C03 is the (commutative) full algebra generated by

£(•) and T [l, p. 342]. Then \=p(S)E<r, for otherwise iS-\I)~lECL

by definition of "full algebra", and I = (S-\I)(S-\I)~l would go

by m to 1 =0. Hence G(X, piT)) =p(G(S, T)) =0, and then/u(G2(S, T))
= G2(X, p(T))5¿0, by (A). Thus G2(S, T) lies in no maximal ideal of

G, so is invertible in Q.

Now for each i, set

(7) F i = G2(S, n-^WVfytiCr - Tj).

To verify (D), notice that 2tFi = 7 follows from (6). For i^j, FiFj

contains each factor T— Tk at least once, so vanishes by (5) ; and then

F2 = FiÇSjFi) = Fi follows. Similarly (7) and (5) give (T-Ti)Fi = 0
for each i, and summing yields r = Z¿7\,F,-, to conclude the "only if"

part of the proof.

Conversely, suppose that Fi, ■ ■ ■ , Fn obey (D). Then each F i

commutes with £(•). hence with each Tj, and T = '2iTiFi commutes

with 5. Moreover, it follows by induction that TkFi=T*Fi, hence

that G(5, T)Fi — 0, for each i. Summing yields G(5, T) =0, to con-

clude the "if" part.
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