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ON THE EXISTENCE OF DOUBLE SINGULAR INTEGRALS
FOR KERNELS WITHOUT SMOOTHNESS

T. WALSH

AssTRACT. Calderén and Zygmund have proved the pointwise
convergence of singular integrals in R* for locally integrable
homogeneous kernels whose even part is locally in L log L by
change to polar coordinates and use of the boundedness in L? of
the maximal operator of the one-dimensional Hilbert trans-
formation. The present note shows how analogous results for
double singular integrals can be derived from boundedness of the
maximal operator of the double Hilbert transform.

For i=1, 2 let K; be a complex valued function defined in R
which is (positively) homogeneous of degree —u;, ie., K;(\x;)
=\"%K (x;) for x;#0, A>0, locally integrable away from the origin,
of mean value zero on the unit sphere of R%, i.e.,

f Ki(x{)dx! =0
lzg’|=1

(where dx} denotes ordinary surface measure on S%—!= {x{: lxﬁ, =1})
and whose even part belongs to L log L on the unit sphere, i.e., -

) | Ki(x!) + K(—=!) | log* | Ku(w!) + Ki(—x!) | de! <.
|z*1=1 :

A. Zygmund called attention to the problem of showing by the
methods of [2] that if

2 F*(x) = sup{| fe.e(®) | : &1, &> 0}

where

ftl.ez(xl, xz) = f f Kl(xl bl yl)Kz(xz — yz)f(y" yz)dyzdyl
lz1—v11>€61 ¥V [z2-y2l>er

then
@) I < 4llfll,  fort<p< e

where 4, depends on p, K;, K,. In case the moduli of continuity w; of
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K., K, restricted to Sm~1, S»~! satisfy the Dini condition [§ ¢ 'w;(t)dt
< » for i=1, 2, this was shown by Cotlar in [3]. The purpose of this
note is to prove the following

PROPOSITION. Suppose K1, K, are homogeneous of degree —n;, —na,
respectively, locally integrable and of mean value zero on S™—' and
satisfy (1), then for f* defined by (2), (3) is valid. Moreover if v indicates
how many of K., K, are odd (v=0, 1, 2) then A,=0((p—1)""*) as
pl1(0@*)asp—=).

The proof requires the following

LEMMA. Let fE L?(R?) and
}(EI’ 22)

= sup
My >0

then ]|f'||,§A,|]f||,,where A,=0((p—1)"2 forp | 1.

For the maximal double conjugate function of a periodic function
the analogous assertion follows from the arguments of [6, especially
pp. 228-233] and with 4,=((p—1)"*) is Theorem 3 of [4]. Again
with A,=0((p—1)~*) the lemma is contained in [3, Theorem 3, p.
102]. A proof analogous to that of Theorem 6’ of [6] might run
briefly as follows.

Let

P = v @+ 1), 0 ) = 7+ )
then (¢m)~(§ —4n)~' = P(§,7) —2Q(£, 1), hence
[P() 771) ® P(’ 772) - Q(: 771) ® Q('y 772)] *f(fly EZ)

W_zf f (]1 — 7)Y (&2 — 72)"Y(r1, T2)dredmy
181—m11>m v 1§2—72>n2

and
—[P(-;m) ® Q(-, m2) + Q(-, 1) ® P(+, m2)] * f(&1, £2)

are the real and imaginary parts, respectively, of
Fes £ = @0~ [ [ e 200 = m)mis = rodriar,

&5 = & + iny).

It will be seen that Fis in H?. In what follows C will denote a constant
not necessarily the same at each occurrence. It is well known that,

e.g.,



1971] ON THE EXISTENCE OF DOUBLE SINGULAR INTEGRALS 441

lloC, m) « ¢, ello < Copllf el (Y +27 =)
hence || F|| [H?] < C(p9")?|f||,» and so, if
F*(£y, &) = sup{ | F(&1 + im, & + in2) | 2n1, 92 > 0}
then || F*||, < C(pp")*If]|»- Also it is well known that
lsup{P(-, ) @ P(-, m2) + | £] im, me > O}[, = C(o")7|fllo-
Hence iconsideration of the real part of Fleads to
l[sup{ | @C-, 1) ® Q(-, ) * 1] :my, w2 > 0}][» = Clp2)f]-

It remains to observe that if H(€, 7) = (&) ~'(1 =X (=n.m)» X(—n.n being
the characteristic function of the interval (—1, ), then

H(-,m) ® H(-,n2) — Q(+, 1) ® Q(-, 12)

= (H(-, 1) — Q(-, 1)) ® H(-, n2) + Q(-, 1) ® (H(-, n2) — Q(-, n2))
and |H(E, 1) — Q& n)| Sn~¥(&n~!) where ¢ is even, nonincreasing in
(0, ) and integrable so that, e.g.,

< Cpp'llgC-5 )l

?

sup ni ¥ (nit ) * g(-, &)

n >0

(e.g., by Lemma 1 of Chapter II of [1]) where
g, &) =SI;E>IH(',’72) *f(, +) &)

Proor oF THE PROPOSITION. First of all, for a.e. (x1, x2) and any
€1, € >01

f f | Ki(y) Ko(92)f(%1 — 91, ©2 — 32) | dyadys < .
> vV lygl>es

This follows as in [2, p. 292] by integration of the last integral over
any compact subset of R"XR™, In fact, let B;= {x;:x;ER™, ||
<r:} then the integral of the left-hand side of (4) over B, X B is at
most

Jod ot woimont [ [ [,

< | flxr — yit, 22 — yi ta) |t dtodt dxsdxdy] dy!

< Ca —1/p ;llﬂr';nlp'ﬂlp na/p’ +llp”f”p
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If K,, K, are both odd then

Jerea(®1, %2) = —f f Ki(y) Ka(y2)f (%1 — y1, 22 + yé)dyzdyl
o 11> Y lyal>es

= “f f Ki(y) K2(y2)f (21 + 31, ®2 — y2)dy2dn
I1l1>e1 v lysl>es

Il

f f Ki(0) K2(y2)f (%1 + y1, 2 + y2)dyedyn.
ly11>e1 v |yal>ee
Hence by (4)

ﬂx,t_z(xly %2)

) ]
= (1/8) f f Ka! ) K a9 Vora o, 205 91 5 94 )i dyd
ly’1=1v |

ve'l=1

where

_fq.e,(xl, X3 Y1, Ys) = f f(x1 — yity, 2 — y4 L)t dtdl,.
11> v |

ta]>eq
Let
JCn, 22590, 94) = sup | foealomn, w5 914, 94) | -
€16 >0 '
f(-, +; 1, ¥5) restricted to any plane parallel to y; and yj; is the maxi-

mal function of the truncated ordinary double Hilbert transforms of f
restricted ‘to such planes. Consequently by the lemma

f f flx — Yi by, X2 — y3 ba; Y1, ¥3 )Pdladly

= A:f f If(xl — ity s — Y3 ts) I’dlzdh

and integration of this inequality over the space of planes parallel to
i and 9} gives ||(-; 31, ¥)||»=44||f]|»- (2) now follows from (5) and
Minkowski’s inequality for integrals as in [2].

If K,, K, are not both odd functions it appears sufficient to consider
the case when both are even; if one is odd and the other even the
following argument simplifies in an obvious manner. If as in [2, p.
299] ¢ denotes a continuously differentiable function of the real
variable ¢, £ 20, equal to zero in (0, 1) and to 1 in (3, =) then
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Fernea(21, %2) = (f f f fm_,,,,«,
© B \flzl—m«l fzz"’ + *fln—ulK‘lfl”“”K")

‘Ki(21 — y0o(| 21— 31| &)
- Ka(x2 — 92)¢(| 22 — 32| )f(y1, y2)dy=dyn.
The integrand is integrable in R™*™ for a.e. (x1, x2) by (4). Let R
denote the (vector valued) Riesz kernel in R™ or R™ according to the
context and define (71 X1), (1 Xns) and (n,Xn:) vector valued func-
tions
g1o(x1, x2) = — p.v. R f(-, x2) (20),
gor(%1, ®2) = — p.v. R * f(x1, -)(x2),
gu(®1, %2) = p.v. (R @ R) * f(w1, %2).
According to the lemma on pp. 299-300 of [2]if Kiy=p.v. R * K,

Kyup=p.v. R = (Ki¢(| . | )) then K, K, are odd, K;; is homogeneous
of degree —n;, for |x;| =1

| Kia(x) — Ka(xs)| £C | Kiyl)| dyl | x|t

lys’l=1

and there are functions G; homogeneous of degree 0 such that for
|| <1, | K| £G:i and [iz1-1 Gi(x})dx; < . Then by (5.10) of [2]
the first integral in (6) equals

) ez""f Ki(x; — y1)¢(| % — yll &)

. f Kas((x2 — yg)ez“)gox(yx, ¥2)dy2dy,

and by §5 of [2] as a function of (y1, x2) the inner integral is in L?,
hence for a.e. x3& R™ the restriction to x; =x5 is in LP(R™) and hence
again by (5.10) of [2] (7) equals

€ Mez ™ ff [K12((x1 — y)er) @ Kao((%2 — y2)es V)] gra(y1, ¥2)dy1dy..

A similar procedure with the second and third terms on the right-
hand side of (6) leads to
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Iﬂh‘a(xly xz) l f';lé:’

< f f [K1o((xr — y0er) ® Ka((x2 — y)ei)]- gna(ys, 2)dyadys

X2 — Y2
+C K, (—)I
1z3—yal<es | X2 — yzl
' f Ki((x1 — y0)eir?) gro(y1, y2)dy | dy:
2 —
vef m(EE)
lz1—y11<eq I 1= yll

dyl

. szz((xz = y2)e)go(y1, y2)dye
of )
lz1—v11<e1 ¥ [29—val<es xl - y1| Ixz - y2|

: If(yh y‘.!) I dy?,dyl.
The first term on the right-hand side is at most

n] ng
€ €2

flzmanfn (Ku(x1 — y1) ® Kan(x: — y:_,)-)

zo—yzl>ez

- gu(y1, y2)dydy

" % — y .
o] oEmm) el i)
Iz1—v11<ey I X — yll |21—p11>€1

Ko(x2 — 92) - gui(y1, y2)dy2

dyl

lzg—y2l>e2

X1 — —1; —ng—1
S (= T
lz1—mi<e1 V' |z2—y2l<es x1 '

| g0, 32) | dysdyn
+ (3 similar terms obtained by interchanging %1, ¥1, €1, G1, 71

with xs, y2, €2, G, 72 in the preceding 3 integrals)
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o o2 2E2)
lz1—mi<a v lz3—v2l<es I X1 — )’1' l X2 — sz

: | gu(}’l, yz) | dy.dy,

—1 —ne—1

+c f f | @ — e |77 ] (22— e |
lz1—n1>a vV |z3—y2l>es
- | guy, ¥2) | dysdyn.

Substitution in the estimate for f (%1, x2), the result for products
of odd kernels, Theorems 1 and 6 of [2],

lgsollz» lgarlls = CopliAllon Nlenlls = C2p)71Ms

and the fact that the “outer” operators (in all but the first term) are
positive imply (3).

REMARK. Completely analogously it can be shown by induction
that if K;E Lio(R™ — { 0}), 1 <4< N, are several kernels all satisfying
the conditions of the proposition then

r@=swlf . f (K:® - ® Kn)(x — 3)
€201V |z (>¢ lzN—yn|>en

@)y, - - -, dyn
satisfies (3), wherex=(x, - - -, xy) ERMt . . . +nn,

It is also clear that analogous results hold for products of several
kernels of any of the types discussed in [2].
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