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A CHARACTERIZATION OF A SPACE WITH
COUNTABLE INFINITY

AKIHIRO OKUYAMA

Abstract. It is well known that, for a countable discrete

space N,

\ßN - N\ = 2s"».

So, any completely regular Ti space X with \ßX—X\ ¿No does

not contain any infinite discrete subspace. In this paper, we char-

acterize those completely regular Ti spaces with countable infinity

as follows: Such a space X is characterized by the two properties.

(a) X is pseudocompact.

(b) There exist a compact metric space Y and a continuous

map/ from X onto Y so that the subset Fo= {y :/_I(y) is not com-

pact J of Y is countable and chjx/-1(y) —/-1(y) is one point when-

ever y <E Yo. (In particular, for any y in Y¡¡, ß(J~1(y)) —f~1iy) is one

point if X is normal.)

1. Introduction. Let ßX denote the Stone-Cech compactification

of a completely regular Ti space X, let \A\ denote the cardinal num-

ber of a set A, and finally, let us call the set ßX — X the infinity.
i i Si

It is well known that \ßN — N\ =22 ü for the countable discrete space

N (cf. [l]). Thus, in general, \ßX — X\ is large. But, on the other

hand, there exist spaces with the infinity consisting of only one point

(for example, the space of all countable ordinal numbers with usual

topology), and if we form the product of such a space with a compact

Fi space consisting of countably many points, we obtain a space with

the infinity consisting of countably many points (for brevity, we say

countable infinity).

A completely regular Ti space with one-point infinity has been char-

acterized in [ 1, 6J ] and a locally compact, regular Ti space with finite

or countable compactification (that is, a space with finite or countable

infinity for some compactification) has been discussed and charac-

terized in [3] and [4].

The purpose of this paper is to characterize a completely regular Fi

space with countable infinity through the use of a suitable compact

metric space and a continuous map. Also, a completely regular Ti

space with finite infinity is characterized as a special case.
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Theorem l.1 For each completely regular 7\ space X, the following

conditions are equivalent :

(1) \ßX-X\ g Ko,
(2) X is pseudocompact and there exists a continuous map f from X

onto a compact metric space Y so that the subset

To = {y E Y:f~l(y) is not compact}

is countable and | c\$xf~liy) —f~l(y) | = Iwhenever yE F0. (In particular,

I ß(f~Hy)) -/_1(y) \=lforyEYBif X is normal.)
(3) For any continuous map f from X onto an arbitrary compact

metric space Z the subset

Zo — |Z E Z:f~1(z) is not compact}

of Z is countable and \c\ßxf~1(y)—f~l(y)\ ^ î^o whenever zEZo-  (In

particular, \ ß(f_1(z)) —/_1(z) | ^ i^o for zEZo if X is normal.)

As a special case, for a space with finite infinity we have Theorem 2.

Theorem 2. For each completely regular Ti space X the following

conditions are equivalent :

(1) \ßX — X\ =n (a positive integer).

(2) X is pseudocompact and there exists a continuous map f from X

onto a compact metric space Y so that the subset F0= {yE Y:f~l(y) is

not compact} consists of just n points and \ c\ßxf_1iy) —f~xiy) | = 1 when-

ever yE T0. iln particular, | /3(/_1(y)) —/-1(y) | = 1 for yE F0 if X is

normal.)

The proofs that (1) and (2) are equivalent in Theorems 1 and 2 are

similar and therefore we only prove Theorem 1.

2. Proof of Theorem 1. (1) implies (2). First, the condition (1)

implies the pseudocompactness of X. Because, if X were not pseudo-

compact, it would contain a closed subset F of X which could be

saturated with a countable (infinite) discrete subspace N of the real

line R by a continuous function/:X—>i?; that is,/(F) = A/and/""1 (A7)

= F. Then we have ß(f)-1(c\ßB N-N)EßX-X, where ß(f) denotes

the extension of/ over ßX. Since ßN = clßB N holds (cf. [l]) and N

has an uncountable infinity, ßX — X must be uncountable, which

contradicts to the condition (1).

Next, let us put ßX — X= {px, pi, ■ ■ • }, where pi^pj for any

Í9^j. Since ßX is a completely regular Fi space, for any distinct m, n

1 The author sincerely thanks the referee for suggesting the present form of

Theorem 1 which is slightly stronger than the original version. The author is also

indebted to the referee for suggesting an elegant proof for Theorem 1.
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there exists a continuous map fmn from ßX into / (the unit closed

interval) with values fmn(pm) =0 and fmn(p„) = I. Define

e:ßX —>P = JJ /    (a metric space)
m,n

by (e(x))m¡„—fmn(x), and put/ = e|A" and Y=f(X). Then F is a

compact metric space. Moreover, Y = eißX). This follows from the

fact that the continuous image of a pseudocompact space is pseudo-

compact, any pseudocompact subspace of a metric space is compact

(and therefore closed) and F is also dense in e(ßX). Furthermore,

since X is pseudocompact and each point of Y is G¡, f is a Z-map and

hence a WZ-map; i.e., cLjx(f~'(y)) =e_I(y) for each yEY (cf. [2]).

Let us put qi = eipi) for i—1, 2, ■ ■ ■ . Then for any yEY which is

distinct from any g¿ we have e~i(y)EX and so f~*(y) ~e~~liy) 1S com-

pact. For qi, from the definition of e, we can easily see that <7,'s are

mutually distinct and so we have e~liqt) =f~liqi)VJ{pi\. This com-

pletes the proof in the case that X is a completely regular Fi space.

If X is normal, we can assert ß(f~1(qt)) = clßxf~l(qd for i = 1, 2, ■ • • .

Thus the proof is completed.

(2) implies (1). Let X, Y, f and F0 be given as in (2). By the

same reasoning as before, we have clßx(f~1(y)) =ß(f)~liy) for each

yEY- For each y^E Y0 we denote cl0x/-1Oy«-) =/_1(y«')^ {/»«} for some

pi E ßX — X. Of course, /3A" is the complete inverse image

of F by ßif) and therefore we have ßX = U{ßif)'1iy):y G Y}

= U{dßxf-liy)--yeY}=\j{f-iiy):yEY}V{pi,p2, ■ ■ ■ J.Thiscom-
pletes the proof.

(1) is equivalent to (3). The proof is almost clear. For the direction

(i)=»(3), if we put ßX = X\j{pi,p2, ■ ■ ■], then Z9={ßif)(pt):

7 = 1, 2, • • • } satisfies the required conditions. (Notice that again/

is a IFZ-map.) For the direction (3)=>(1), it suffices to let Z be a

one-point space.
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