SEMIGROUPS ON ACYCLIC PLANE CONTINUA

B. E. WILDER

Abstract

It is shown that an acyclic irreducible plane continuum which admits the structure of a topological semigroup is an arc if it has an identity, and is either an arc, is trivial, or is decomposible into an arc if it satisfies $M^{2}=M$. This extends some.results of Friedberg and Mahavier concerning semigroups on chainable continua.

Let M be a topological semigroup with minimal ideal K whose underlying space is a nondegenerate compact metric continuum. If M has an identity, M is called a clan.

Under the assumption that M is chainable, Friedberg and Mahavier [3] showed that if M is a clan it is an arc, and if $M^{2}=M$ then either M is trivial, M is an arc, or $M \mid K$ is an arc and M is irreducible from a one-sided identity to some point. In this note we extend these results (using essentially the same arguments) by replacing the condition that M be chainable by the condition that M be an acyclic (i.e., contains no simple closed curve) plane continuum which is irreducible between two points. (Every nondegenerate chainable continuum is homeomorphic to such a continuum.)

Theorem 1. If M is an acyclic clan in the plane, then M is arcwise connected.

Proof. Let G be a closed subgroup of M with identity e and let $C(e)$ be the component of G containing $e . C(e)$ is a subcontinuum of M and is a group. Suppose $C(e)$ is nondegenerate. Then it is homogeneous and by [4] contains an arc; so by [1] it is a simple closed curve, contradicting the assumption that M is acyclic. Thus $C(e)$ is degenerate and G is totally disconnected. Then M is arcwise connected by [6].

Corollary. If M is an acyclic plane continuum which is irreducible between two of its points it is an arc.

Remark. The referee has observed that except for the existence of the one-sided identity, the conclusion of the next theorem follows from Hunter's argument in [5, Theorem 8], without the assumption

[^0]that M be acyclic. Also, a simplification suggested by the referee has been employed in the next argument.

Theorem 2. If M is an acyclic plane continuum which is irreducible between two of its points and $M^{2}=M$, then either
(1) $M=K$ and the multiplication on K is trivial,
(2) M is an arc, or
(3) M has a one-sided identity $e, M \mid K$ is an arc, and M is irreducible from e to some point.

Proof. Let E denote the set of idempotent elements of M, and for e in E, let H_{e} be the maximal subgroup containing e. Since M is acyclic, K is not the cartesian product of two nondegenerate continua [5 , Lemma 2, p. 238]; so K is a group or multiplication in K is trivial [7, Corollary 1]. As in the proof of Theorem 1, if K is a group it is degenerate. In either case multiplication in K is trivial and K is a subset of E.

Now assume that $M \neq K$ and M is not an arc. Suppose M has no one-sided identity. Since M is irreducible between two points a and b, there exist points e and f in $E \backslash K$ such that $a \in H_{e}, b \in H_{f}, H_{e}$ and H_{f} are connected, and $M=(e M e) \cup(f M f)$ [7, Theorem 5]. But H_{e} and H_{f} are degenerate so M is irreducible from e to f. Since $e M e$ and $f M f$ are acyclic plane clans, they are arcwise connected by Theorem 1. Then M is an arc from e to f, a contradiction. Thus M has a right (or left) identity e.

Then $M e=M$ and $e M=e M e$ is either degenerate or arcwise connected. If $e M$ is degenerate, $e \in K$ and $M e=M=K$, a contradiction. Hence $e M=e M e$ is a nondegenerate arcwise connected clan with e as its identity. Let T be an arc in $e M$ from e to its minimal ideal K^{\prime} such that $T \cap K^{\prime}$ is degenerate. Clearly $K^{\prime} \subseteq K$. Since each of $a T$ and $b T$ is a continuous image of T, each is either degenerate or arcwise connected, and there is an α and a β such that each of α and β is an arc or degenerate, $\alpha \subseteq a T, \beta \subseteq b T, \alpha$ contains a, β contains b and each of α and β intersects K at only one point. Since M is irreducible from a to $b, M=\alpha \cup K \cup \beta$. If both a and b belong to $K, K=M$, so let $e \in \beta \backslash K$. If $e \neq b, e$ possesses a euclidean (1-dimensional) neighborhood and since e is a right identity, $e \in K$, a contradiction [2, Lemma 4]. Hence $e=b$ and (3) holds.

Remark. An application of Theorem 1 to some nonchainable continua would be as follows: no continuum in the plane consisting of an infinite half-ray "spiraling down" upon a nondegenerate acyclic continuum admits the structure of a topological semigroup with identity.

References

1. R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. MR 22 \#1869.
2. Haskell Cohen and R. J. Koch, Acyclic semigroups and multiplications on two-manifolds, Trans. Amer. Math. Soc. 118 (1965), 420-427. MR 30 \#5283.
3. M. Friedberg and W. S. Mahavier, Semigroups on chainable and circle-like continua, Math. Z. 106 (1968), 159-161. MR 38 \#263.
4. A. M. Gleason, Arcs in locally compact groups, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 663-667. MR 12, 391.
5. R. P. Hunter, Note on arcs in semigroups, Fund. Math. 49 (1960/61), 233-245. MR 23 \#A628.
6. R. J. Koch, Threads in compact semigroups, Math. Z. 86 (1964), 312-316. MR 30 \#1499.
7. R. J. Koch and A. D. Wallace, Admissibility of semigroup structures on continua, Trans. Amer. Math. Soc. 88 (1958), 227-287. MR 20 \#1729.

Tennessee Technological University, Cookeville, Tennessee 38501

[^0]: Received by the editors May 3, 1970.
 AMS 1969 subject classifications. Primary 5455; Secondary 5480.
 Key words and phrases. Topological semigroup, clan, acyclic plane continua, arcwise connected.

