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A GENERAL THREE-SERIES THEOREM

B. M. BROWN

Abstract. Let ¡ii, J, P] be a probability space. The subset of

Si on which an arbitrary sequence of random variables converges is

shown to be equivalent to the intersection of three other sets, each

specified by the almost sure convergence of a certain sequence of

random variables. Kolmogorov's three-series theorem, which gives

necessary and sufficient conditions for the almost sure convergence

of a sequence of sums of independent random variables, is obtain-

able as a particular case of the present result.

1. Introduction. Kolmogorov's famous three-series theorem states

that the sums of a sequence of independent random variables (r.vs)

converge if and only if three other series (of constants) also converge.

In the present work, the initial assumption of independence is dis-

pensed with and we obtain the result (Theorem 1) that sums of a

sequence of arbitrary r.vs converge if and only if three other series

(of r.vs) converge.

The r.vs of the three series in question are derived from the orig-

inal r.vs by use of conditional expectation operators, and become

constants when the original r.vs are independent. Thus, Theorem 1

contains the Kolmogorov theorem as a special case.

In the case of independent r.vs, the probability of convergence is

clearly 0 or 1, but without independence, the probability of con-

vergence may lie between 0 and 1. Theorem 1 may therefore be

viewed as specifying the set on which convergence occurs as the inter-

section of three other sets, upon each of which a certain series of r.vs

converges.

Theorem 1 is stated below. Its proof, given in §3, follows without

difficulty from known results of Levy, Doob and Burkholder, and

from the three-series theorem of Kolmogorov. §2 contains a list of

these and other preliminary results.

Let {Xn, în, w = 0, 1, 2, ■ • • } be a stochastic sequence on the

probability space {i2, ï, P}, defined by taking 3n = (£>(Xo,Xi, ■ • -,X„),

the Borel cr-field generated by X0, Xi, ■ ■ ■ , X„. Denote the indicator

function of a set A by 1(A). Let K< <*> be an arbitrary positive con-

stant and write
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F» = AV(| Xn\  £K),       n = 1,2, ■ • •.

In notation such as ¿jf, JJy and fly, the (countable) index / is

always taken to run from 1 to ». The statement " ^y Zy converges"

is used to denote / ,L ! Zy converges as »—» «. We say that two sets

are equivalent if their symmetric difference has probability zero.

Theorem 1. Let B = [¿jy A"y converges]. Then B is equivalent to the

set on which

(1) E^[|^y|   >Ä-|5y-i] < »,

(2) £ £( Fy | ÎFy_i) converges,

and

(3) £ £(( Fy - Ei Fy | iy_i))2 I iy_i)   <   oo
i

all hold. Also, the set on which (3) holds is equivalent to the set on which

(4) Z(Fy-£(Fy|iFy_i))2<   ».
y

2. Preliminaries. We list the results upon which the proof of the

theorem depends.

Kolmogorov's Three-Series Theorem. If Xi, X2, • • ■ are in-

dependent r.vs, then X)> Xj converges a.s. if and only if

^ P[\ Ay|   > K] < oo, ^2 EY, converges,   and
y y

E£(Fy-£Fy)2  <   00.
y

Lemma 1 (Burkholder, Theorem 4 of [2]). Let {Vn, 9». «

= 1,2, • • • } be a martingale difference sequence for which E sup„| F„|

< oo. Then the set [ ¿^y F/ < <» ] & equivalent to the set on which

¿¿j Vj converges.

Lemma 2 (Doob, Corollary 1, p. 323 of [l]). Let {Vn, 9„,

«=1,2, • • • } be a stochastic sequence for which

F[0 g Vn á K] = 1,        a« » = 1, 2, • • • ,

/or  some  positive finite  K.   Then  the  two sets   [ ¿jy  Fy < oo ]  a»¿

[ J^y £( Fy| 8y-i) < oo ] are equivalent.

As a corollary to Lemma 2 we obtain
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Lemma 3 (The conditional Borel-Cantelli Lemma, due to

Levy). Let Ai, A2, ■ ■ ■ be a sequence of sets and 90CS1C92C ■ ■ • a

sequence of a-fields such that AnEQn, n = l, 2, • • • . Then the two sets

[ 2j I(Aj) < 00 ] and  [ J^y P(^4y| Qy_i) < » ] are equivalent.

Lemma 4. Let <pi(-), <pi(-), ■ ■ ■ be a sequence of moment generating

functions (m.g.fs) of distribution functions, with

fdFAjt),

and

(6) 1 - FM + Fi(-x) = 0

for all x>K, and all j = l, 2, • • • . If there is a real function \p with

xj/(t) > Ofor all t such that

n

(7) lim  ]~l <bj(t) = \p(t)       for all t,
y-i

then ¿_,j <t>'j(0) converges.

Proof. By equations (5) and (6), <p¡ is the m.g.f. of a r.v. E/y for

which P[\ Uj\ ^K] =1, allj = 1, 2, • ■ • . From equation (7), for each

fixed  /, limn-»« 11"^»^.! 4>i(l) — 1   uniformly in m = 1,   2, • • • .  Thus,

if Ui, Ui, ■ ■ ■ are independent with S„= Ux+ • • • + Un, then

(8) lim E exp(t(Sn+m - 5»)) = 1

for fixed t, uniformly in m. Therefore (8) holds uniformly in m when /

is replaced by — /. Adding, we obtain

lim E cosh(t(Sn+m - S»)) = 1
n—>»

for fixed t, uniformly in m. But cosh x is convex with a minimum of 1

at x = 0, so that Sn+m — 5„—>0 in probability as n—* °o , uniformly in m,

i.e. there exists a r.v. 5 such that S„—>5 in probability as «—»00.

Therefore lim„-»w Sn = S a.s., since Sn is the sum of independent r.vs.

Then, by Kolmogorov's three-series theorem, 2/ EU¡= ^2¡ <t>'j(0)

converges.

3. Proof of the theorem. The equivalence of the sets on which (3)

or (4) hold follows from Lemma 2 and the uniform boundedness of

the { Yn} ■ It then suffices to show that B is equivalent to the set D on

which (1), (2) and (4) hold.
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(i) Sufficiency. By (4) and Lemma 1,

(9) ILiY) — Ei y i I Sv-i))        converges    a.s. on D.
y

Also, from (1) and Lemma 3,

(10) £ I(Xj jí Fy) < oo a.s. on D.
y

(9) and (10) together with (2) show that ¿uf X,- converges a.s. on D,

i.e.thatP(D-B)=0.

(ii) Necessity. To show that P(B — D)=0, we note first that (10)

holds, and hence, by Lemma 3, (1) holds, a.s. on B. Thus it remains to

show that PiB—D') = 0, where D' is the set on which (2) and (4) hold.

To do this, we introduce the set B' on which

(11) 23 y i converges,
i

and show that P(B-B') =P(B'-D') =0. Because (10) holds a.s. on

B, (11) also holds a.s. on B, i.e. P(B—B') =0. Therefore it remains to

show that PiB'—D')=Q, i.e. that (2) and (4) each hold a.s. on B', and

to do this it suffices, in turn, to show that (2) holds a.s. on B', for

then (9) holds a.s. on B' and hence, by Lemma 1, (4) holds a.s. on B'.

Let T„ = Fi+ • • ■ + Yn, and for fixed real d let

WniB) =e°T»(ÛEie>ri\5^i)
\ y-i

With IFo(0) = 1, { WniB), Sn, «= 1, 2, • ■ • } is a martingale. Moreover

WniB)^0 and EW„iB) = l for all « = 1, 2, ■ • • , so that WniB) con-

verges a.s. as n—->°o by the martingale convergence theorem. But F„,

and hence eeTn, converges a.s. as w—* oo on B'. Therefore

(12) II £0"F/1 3v-i) converges
y

to a nonzero limit for coEM, where PiB' — M) = 0.

For each/ and almost all fixed «Gß, the r.v.

(13) 0y(0)=F(^/|iy_l)

is the m.g.f. of a uniformly bounded r.v. Specifically, there exist sets

Mi, M2, ■ • • such that My£Sry_i, PMj=l, and equations (5) and (6)

hold for all coEMj,j= 1, 2, • • • ¡thus

(14) Fy(x) = E(I(Yj g x) | ïy_0        for o E My.

■



I97i] A GENERAL THREE-SERIES THEOREM 577

(For further amplification see the Remark below.) By (12) and

Lemma 4, X)y <£/(0) converges for coE(f\j Mj)i^M. But #(0)

= £(Fy| ffy_i) for all a. Also P(B'-(C\j Mi)r\M)=0 since P(B'-M)
= 0 and PMj= 1 for all j. Therefore (2) holds a.s. on B', completing

the proof of necessity, and of the theorem.

Remark. Because conditional expectations are defined uniquely

only up to sets of probability zero, it should be verified that, with

<j>j(0) and Fj(x) as given by (13) and (14), equation (5) and Lemma 4

do not depend upon an uncountable range of values of 6 and/or x. In

fact Lemma 4 depends only on equation (5) holding for two values of

8, while the required version of (5) itself may be written

2»

4>s(0) = lim    X) ci(4-1)2"',P[A'-(Â! - 1)2-- < Y, ú Kk2-*\$j-i]

(by the monotone convergence theorem for conditional expectations),

thus involving only a countable number of conditional expectations.
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