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ON SOME PRODUCTS INVOLVING PRIMES

S. UCHIYAMA

Abstract. Asymptotic formulae are given for the products Pi (x)

(/ = 1, 3) defined below.

We put, for x 2:2 and I = 1 and 3,

*(*)-   n  (i--Y
Pi[X;p=lW    \ Pf

where the product is taken over the specified primes p. Our aim in

the present note is to show that

Px(x) = M 1tf-c)1'îaog s)-1'2 + O((log *)-"*),

(1) ÍTArr°\m
F,(x) = ( —¿—J    Gog *)"1/2 + 0((log x)"3'2),

where C denotes the Euler constant and

Ai = SSl-j)
(so that^i^3 = 8/7T2).

Now, let us define x(«) =0 for even n and =( —l)'»-»'2 for odd n.

Then, x(n) is a residue character (mod 4), and the corresponding

L-series L(s, x) = ^°-i x(n)n~* represents a continuous function of s

for s>0. In particular, we have ¿(1, x) =ir/4 and

píxV />   / Vlogx/

(cf. [l, §109]), whence

P»(x)       x /   1   \

PiW       4 \log */

On the other hand, we have by a well-known theorem due to

F. Mertens (cf. [l, §36])

2e~c /    1    \
(3) Px(x)P3(x) --+ 0   —— ).

log* \log2 xf
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The result (1) follows at once from (2) and (3).

We note that our asymptotic formula for Pi(x) will give a solution

to a problem recently posed by D. Suryanarayana in [2].
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