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ANALYTIC FUNCTIONS CLOSE TO MAPPINGS
CONVEX IN ONE DIRECTION

WALTER HENGARTNER AND GLENN SCHOBER1

Abstract. By analogy to the class of close-to-convex functions

we define a class of analytic functions which are close to a family 2

of mappings onto domains convex in one direction. In contrast to

the close-to-convex class the close-to-2 functions are not neces-

sarily univalent. However, we determine the radius of convexity

for 2, and this gives a lower bound for the radius of univalence of

close-to-2 functions. We next derive the coefficient estimate

\A„\ ¿n\A¡\ for close-to-2 functions and conclude with an ele-

mentary distortion theorem.

1. Mappings convex in one direction. Let 2 be the family of non-

constant analytic functions/on the unit disk TJ= {\z\ < 1} satisfying

the condition

(1) Re{(l -z2)f'(z)} =0,       zEU.

If /£2, it is known [4] that/ is univalent and f(U) is a domain convex

in the v-direction, i.e., the intersection of /(£/) with each vertical line

is connected (or empty). Moreover, / possesses the normalization

(2)

lim sup Re/(z) = sup Re/(z),

liminf Re/(z) =   inf  Re/(z),
2->-l I«I<1

meaning that the prime ends corresponding to z= +1 are, in some

sense, the right and left extremes of f(U). In fact, the univalence,

convexity in the indirection, and normalization (2) characterize the

class S [4, Theorem l].

We now determine the radius of convexity for the class 2.

Theorem 1. 7//£2, then f maps {\z\ OJ onto a convex domain for

rgc = §(l + \/5)—[K1 + v/5)]1/2 = .346 • • • . The constant c is sharp

for the function
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*         (1 - iz)2
(3) f(z) = — log-,

2 (1  - 22)

which is in 2.

Proof. Let fE^ and define

(1  - 22)/'(z)  -  1
C(z) =

(1 - z2)f'(z) + 1

Since  Re{(l— z2)f'(z)} ^0,   the  function  G is  analytic in   U and

j G| ¿1. It is a consequence of Schwarz's lemma that

I G'(z) |       ^        1

1 -  I G(z)|2      1 -  | z|2

Hence, for |z| ^r,

(       tf'(*)\ (í + z2        2Gz'(z)   )
Reh+^—^-}  = Re<^-h-— >

I        f'iz) ) ll - z2      1 - G2(z)Jf'(z) ) U - z2      1 - G2(z)J

1 - r2 2r 1 - 2r - 2r2 - 2r3 + r4
>
" 1 + r2       1 - r2 1 - r4

Using elementary calculus one verifies that l—2r — 2r2 — 2r3+r* is

positive for0gr<c = §(l + \/5)-[è(H-v/5)]1/2 = .346 • • ■ . There-

fore /(| 21 <r) is convex for r^c. The constant c is best possible since

Re{l+z/"(z)//'(z)} <0 for z = ir and r£(c, 1) for the function (3).

The study of mappings / onto domains convex in the ii-direction

was introduced by Fejér [2] and developed extensively by Robertson

in [7] and elsewhere, especially for the case where all the coefficients

of/ are real. In the latter case the domains are symmetric with respect

to the real axis and either / or —/ belongs to S.

It should be noted that every domain D convex in the ^-direction

does not necessarily admit a mapping in S. In particular, the nor-

malization (2) requires the complement of D to contain at least two

vertical half-lines unbounded in opposite directions.

2. The class of close-to-S functions. In [5] W. Kaplan introduced

the class of close-to-convex functions, i.e., functions F analytic in U

such that Re {F'/<p'} > 0 for some convex mapping «p. We make an

analogous definition.

Definition. A function F analytic in U is close-to-'E if there exists a

mapping fE^ such that
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F'(z)
(4) Re —- > 0,       zETJ.

m ~
If (4) vanishes at some point, then by the minimum principle for

harmonic functions it vanishes identically. In that case either íF£2,

— iFE^i, or inconstant. If, on the other hand,

F'iz)
(5) Re-—>0,       zEU,

/ W

then

d F'if-'iw))
— Im F of~\w) = Re _^__l^i > 0
dv f'itKw))

and hence the composition F o/-1 maps each vertical line segment in

fiTJ), which is convex in the ^-direction, onto an analytic arc that

may be parametrized as a function u = u(v).

If F is close-to-2, then F need not be univalent; however, F is

locally univalent (or constant). Theorem 1 gives rise to an estimate

for the radius of univalence:

Theorem 2. If F is close-to-li and nonconstant, then Fis univalent

on the disk {\z\ <c} where c is defined in Theorem 1.

Proof. If Re{F'/f']>0, /G2, then g=Fof~1 is analytic on the

convex set/(|z| <c) and Re g'>0. This is the familiar criteria of

Wolff-Noshiro-Warschawski [9], [6], [8] for univalence of g, from

which univalence of F = gof on {|z|<e} follows. If Re{F'//'|

vanishes at some point, then F is univalent on TJ since either ÍFE2 or

-ÍF&.
Remark. It is interesting to note that the same lower bound c was

obtained by W. Chase [l] for the radius of univalence of "0-close-to-

star" functions.

3. Coefficient estimates. We note as a lemma some results we will

use from [4],

Lemma 1. Iff(z) =^T=o a„zBE2, then

(6) | a„ |   ^  | ai |   for n = 1

and

(l-r)\f'(0) | |/(0)|
(7)-^   \f'(z)    ^ -   for \z\   ^ r < 1.

(l + r)(l + r2)       " W|        H-r)2 '   '
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Both (6) and the upper bound in (7) are sharp for the convex mapping

/(z) =z(l —z)_1, and the lower bound in (7) is sharp for the mapping (3).

Theorem 3. If F(z) =^2ñ=o A„z" is close-to-'Z, then

(8) | A„\  = n\ Ax\   forn^l.

Remark. The estimate (8) is sharp since the Koebe function

kiz) =2(1— 2)-2 is close-to-2 relative to the function fiz) =z(l —z)_1

in 2.

Proof of Theorem 3. Suppose Re{F'//'}eO where /£2. If

íF£2 or —¿F£2, then | .¡4„| á | ̂ 4i| follows directly from Lemma 1.

We may therefore assume that (5) holds and define

[F'(2)//'(z)] - Im{F'(0)//'(0)}
h(z)  =--,-:-

Re{F'(0)//'(0)}

= 1 + Z) CjzK
y-i

Since h is analytic in U and has positive real part, it is well known

[3, p. 199] that | Cj\ £2 for all/ From (9) we find

°° °° r^4i     /-4i\°°     ~i
X) nAnZ»-1 = X nanzn~l-h ( Re-) £ Cjz'
n-l n=X L ai \ at / y=i J

and by equating coefficients

;
On ( Ai\^=i

iAn = n— Ai + I Re-1 ¿^ kakcn.
ai \       ai / k=i

Using the bound |an| ^|#i| from Lemma 1 and |cy| g2, we have

n\An\  m\n\A%\ + »(« - 1) | ai | (Re —) ^ «21 -411 .

4. A distortion theorem.

Theorem 4. If F is close-to-^, then for \z\ ár<l,

(l-r)2|F'(0)| .       (i+r)\F'(0)\
(10)-—-— < | F'iz) |   ^

(1 + r)2(l + r2) " (1 - r)3

and

i i      r I F'(0) I
(ID |F(z)-F(0)|   gg ,

(1 - r)2
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and, for \z\ =r<c,

(12) T—-arc tan r\ \ F'(0) |   g  | F(z) - F(0) | .
Ll + r J

Remarks. Although functions which are close-to-2 need not be

univalent, it is interesting that the upper bounds in (10) and (11) are

the same as for the class of univalent functions. They are also sharp

since the Koebe function is close-to-2. Moreover, the lower bounds in

(10) and (12) are sharp for the function

2z 1 1 - z
(13) Fiz) =-r + - log —- ,

1 — iz       2 1 + z

which is close-to-2 relative to the function (3).

As a consequence of (12) close-to-2 functions F have the property

that FiU) contains the disk {|w| <| F'(0)|d} where d = 2c(l+c)~1

— arc tanc = .18 • • • .

Proof of Theorem 4. If g is analytic in TJ and Re gèO, it follows

from Schwarz's lemma (cf. [4, Lemma 5]) that g has the representa-

tion

g(0) + g(0)G(z) .        .    .
(14) g(z) =       '      ";/ where | G(z) \   Ik  \ z \ .

1 - G(z)

Suppose now that g = F'/f where Re {F'/f} ^ 0 and /£2. Then

(15) |F'(z)|   =  |/(«)
F'(0)   ,   F'(0)

G(z)
/(0)        /(0)

1 - G(z)

Direct estimates of (15) together with (7) yield the bounds in (10).

Inequalities (11) and (12) follow from (10) by standard integration

arguments.

5. Concluding remarks. Theorems 2, 3, and 4 hold more generally

for the class of functions F analytic in TJ and satisfying

F'ï

7
(16) Re{*iayr} ^o

for some /(E2 and «G[0, 27r). Except for the degenerate case

Ke{eiaF'/f'} =0, relation (16) means geometrically that components

of horizontal lines in e~iaf(U) are mapped by Fo(e_<a/)_1 onto

analytic arcs that may be represented as functions v = v(u) and,

similarly, components of vertical lines are mapped onto arcs with

representation u = u(v).
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