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FUNCTIONS WHICH ARE FOURIER-STIELTJES
TRANSFORMS

STEPHEN H. FRIEDBERG

ABSTRACT. Let G be a locally compact abelian group, G the dual
group, M(G) the algebra of regular bounded Borel measures on G,
and M(G)” the algebra of Fourier-Stieltjes transforms. The pur-
pose of this paper is to characterize those continuous functions on
G which belongs to M(X)", where X is a closed subset of G and
M(X)={uE M(G): the support of u is contained in X}.

More precisely, we will prove the following theorem:

THEOREM. Let X be a closed subset of G and f a continuous function
on G. Then the following are equivalent:

(a) FEM(X)". \

(b) {M}CM@G), |An(x)| M for all xEX and A(x)—>0 for all
xEX implies [o fdN—0.

The case where f is assumed bounded and X =G was proved by
Ramirez in [2] by applying Grothendieck’s completion theorem [1,
p. 271] to the paired spaces M(G)" and M(G) under the pairing
(8, N) = fo sd\ where € M(G) and N\E M(G).

We provide a short proof of the more general result using the well-
known theorem of Eberlein (see, for example [3, p. 32]), which states
that a continuous function f on G is a Fourier-Stieltjes transform if
and only if there exists a constant 4 such that

> ef(va) | £ A p]]ws v: € G,

t=1

for every trigonometric polynomial $ on G of the form

p(x) = 2 covi(x), x € G.
=1
PROOF. Suppose f = where u& M(X) and {\,} satisfies the hypo-
theses of (b). Then by Fubini’s theorem and the Lebesgue dominated
convergence theorem, we have
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fa fdNg = fxi,.dg —0.

Now assume that f satisfies (b). We will first show that fEM(G)".
By Eberlein’s theorem we must show that if {$,} is a sequence of
trigonometric polynomials on G, say p.(x)= D I ciuYin(x) where
xEG and v, €G, with p,—0 uniformly on G, then D> ™ cinf (Yin)—0
as n— o,

Now let N\, = D ¥ ¢, 8., M(G) where §;, is the point mass at
Yin. Since A\, =p, for every n, we have that {)\,.} satisfies the hy-
potheses of (b) and hence

k(n)

Ecinf(')’-’n) =j‘afd>\n—>0 as n — o,

=1

Therefore f =g where & M (G) and hence we need only show that
the support of u is contained in X. Suppose that this is not the case.
Then the regularity of u allows us to choose a compact set EC X,
the complement of X, such that u(E)#0 and a sequence {U,} of
open sets satisfying EC U,C X’ and Ipl (U\E) <n'for every n.

Now choose a sequence {7\“} CM(G) with 0=, <1, A\, =0 outside
U.,, and A,=1 on E for every n. Clearly {)\,,} satisfies the hypotheses
of (b) and hence [3 fd\,—0.

However,

j;; fa\a

But this is a contradiction.

REMARK. It should be noted that if the assumption of continuity
is dropped and X is replaced by G, then (b) will imply that fEM(G) ",
where G is the Bohr compactification of G.

Xndl-‘ ‘ ;
Un

f Exndﬂ —’ f U,,\Exnd#

= | w(E) | —n 1= | u(E)| = 0.
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