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THE WEYL ESSENTIAL SPECTRUM

RICHARD BOULDIN

Abstract. Using a modest geometric hypothesis the main

theorem of these results classifies the Weyl essential spectrum and

the Browder essential spectrum according to the standard ter-

minology for the spectrum of a Hubert space operator.

1. Introduction. The recent papers [l], [4], [6], [8] have classified

the Weyl essential spectrum for various classes of operators on a

Hubert space. In [3] we classified the Wolf spectrum, the Weyl

spectrum, and the Browder spectrum for a Hubert space operator

reduced by its finite dimensional geometric eigenspaces. We showed

that our theorems contained the results in the above-mentioned

papers and finally we listed a number of applications. Our purpose

in the present note is to examine a condition which is alternative to

the hypothesis that each finite dimensional geometric eigenspace

reduces the operator. This alternative condition is properly weaker,

although somewhat more complicated. We deduce a simplified form

of the main result of [3] using this alternative hypothesis; neither

do we repeat the applications of the main result nor do we relate the

main theorem to the above-mentioned papers since that is the same

as in [3]. We study the alternative hypothesis in order to show that

it is properly weaker than the previous hypothesis and to show that

it is easily verified.

2. Preliminaries. Throughout this note we shall use "operator" to

mean a closed linear operator defined on a vector space which is

dense in the fixed underlying Hubert space H. If T is such an oper-

ator and Ho is a subspace of H invariant under T then T/Ha de-

notes the restriction of T to H0. The conjugate of the complex

number 2 is written 2* and we write the scalar operator zl as simply

2. We say X is an isolated point of cr(F) to mean there is no sequence

{XnlXn^X, X„G<r(F)} which converges to X and we denote closure

of the set S by S~.
An operator T is said to be Fredholm if dimension [kernel T] < °o,

TH is closed, and codimension TH< 0°. If T is Fredholm then the

Presented to the Society, November 21, 1970; received by the editors April 28,

1970 and, in revised form, September 1, 1970.

AMS 1969 subject classifications. Primary 4615, 4710; Secondary 4748, 4730.
Key words and phrases. Essential spectrum, operator on a Hubert space, eigen-

value, algebraic multiplicity, geometric multiplicity, Fredholm operator, index,

closed range.

Copyright © 1971, American Mathematical Society

531



532 RICHARD BOULDIN [May

index of T is [dim ker T — codim TH]. We recall the following defini-

tions of essential spectrum which have been given for closed operators

in a Banach space. A point \ from the spectrum of T, i.e. XG<r(F), is

in the essential spectrum of Wolf provided that either iT—X)H is

not closed or else it has infinite codimension. The essential spectrum

of Weyl is {XG<r(F):(F—X) is not a Fredholm operator with index

equal to OJ ; the essential spectrum of Browder is {X£<r(r): either

(F—X) is not a Fredholm operator with index equal to 0 or X is not

an isolated point of <r(F)}. If these three sets are ordered by inclusion

then the above enumeration is clearly nondecreasing.

In order to save space we are going to give a name to the condition

which is our basic hypothesis. The condition is the following: corre-

sponding to XGff(F) there is a number less than 1, say b, such that

| (f, g)\ îèb whenever/Gker (F—X), ||/|| = 1 =||g||, and g is an eigen-

vector for some eigenvalue distinct from X. When the condition is

satisfied we shall say "ker (F—X) is not an asymptotic eigenspace."

Of course if the condition fails to hold then "ker (F—X) is an asymp-

totic eigenspace."

3. Classification of essential spectrum. We prove a basic fact about

the spectrum of a Hubert space operator.

Theorem 1. Let T be an operator on H such that ker (F—X) is not

an asymptotic eigenspace of T and let {X„j be a sequence such that

Xn^X, X„G<r(F), and X„—»X. If for each » = 1, 2, • • • there exists a

unit vector fn such that fnE^er{T —X„) then iT—\)His not closed.

Proof. Take a sequence of unit vectors such that ||(F—X„)/„||

= 0 and decompose /„ into /„'+/» where /„' Gker (F—X) and

f'n'E [ker (F—X) ]-■-. If P is the orthogonal projection onto ker (F—X)

then/„' =Pfn and/;,' = (7 — F)/„. Because ker (F—X) is not an asymp-

totic eigenspace of F for each n and any unit vector gEPH we have

| {fn, g) I á b ; in particular this is true for g =/„', that is

5^    \{fn,f'n)\    =    \{fn,Pfn)\     =    |   (/.,*»/.) |

=    \(Pfn,Pfn)\     =\\f'n\\2.

Thus ||/;'||2=l-||/„'||2èl-5>0. Now we note the following sim-

plifications

(F - X)/" = (F - X)(/B - fn) = (F - X)/„,

||(F - X)/n'|| f£ ||(F - X„)/B|| + ||(Xn - X)/n||

= ||(F-X„)/„|| +  |X„-X|.
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Consequently ||(F—X)/¡,'||—>0 as «—>«>. We may replace the original

sequence {/„} with the sequence {f„'/\\f'„'\\} and thus we may assume

that ||(r-X)/.||-»0 and/« G [ker (T-X)]^.
It follows that (F-X)+(F-X)/„=/„ where (T-\)+ is the linear

transformation inverse to (T—X): [ker (F — X)]-1-—*[(T—X)H]~. Ii

(T—\)H is closed then (T—X)+ is bounded by application of the

closed graph theorem, noting that (F—X)/[ker (F—X)]x is a closed

operator. Consequently if (F—X)H is closed then (T—\)+ is bounded

and ||(F-X)+(F-X)/„||-*0 since ||(F-X)/n||->0. However this is

nonsense since ||(F—X)+(F—X)/„|| =||/n|| =1 and hence (T — \)H is

not closed.

The following lemma is a special case of a well-known theorem.

Lemma 1. Let {\n} be a sequence such that X„G<r(F), Xnj^X, and

X„—>X. If for each n the operator (T—X„) is not a Fredholm operator then

(T—X) is not a Fredholm operator.

Proof. Because (F—Xn) converges to (F—X) in the operator norm

we would contradict Theorem 5.17, p. 235, of [7] if (F—X) were a

Fredholm operator.

We now conclude our consideration of nonisolated points of the

spectrum.

Theorem 2. Let T be an operator on H such that ker (F—X) is not

an asymptotic eigenspace. If there exists a sequence, say {X„}, such that

X„G<r(F), Xn^X, and X„—»X then (T—X) is not a Fredholm operator.

Proof. For X„£<r(F) there are only three possibilities: (a) (T— X„)

is not one-to-one, (b) (F—Xn) is one-to-one but (T — \n)H is not

closed, (c) (F—X„) is one-to-one with closed range but [(T—\n)H]1-

9e {0}. Otherwise we could apply the closed graph theorem to see

that (F—X„)_1 is everywhere defined and bounded.

Now let {X„} be any sequence such that ~KnEo(T), Xn^X, and

X„—»X. Either there is an infinite subset of {X„} satisfying (a), in

which case we apply Theorem 1 to see that (T—\)H is not closed, or

else there is an infinite subset of {X„j such that for each ß in that

set (T—ß) satisfies either (b) or (c). If either (b) or (c) is satisfied by

(T—ß) then this operator is not Fredholm and we may apply Lemma

1 to conclude that (T—X) is not Fredholm.

We are able to complete our consideration of isolated points of the

spectrum with the following lemma. For a definition of algebraic

multiplicity see pp. 178-181 of [7].

Lemma 2. Let T be an operator on H with X an isolated point ofa(T).
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(T—X)H is closed with finite codimension if and only if X is an isolated

eigenvalue with finite algebraic multiplicity.

Proof. See Lemma 3 and the second and third paragraphs of the

proof of Theorem 3 in [3j.

Now we can state the main result of this note.

Theorem 3. If each finite dimensional sub space ker (T — z),for any

complex number z, is not an asymptotic eigenspace then the Weyl spec-

trum of T coincides with the Browder spectrum of T which coincides

with the points of o(T) that are not isolated eigenvalues with finite alge-

braic multiplicity.

Proof. Apply Lemma 2 to any isolated point of <r(T) and apply

Theorem 2 to any nonisolated X such that ker (F—X) is finite dimen-

sional. If ker (F—X) is infinite dimensional then obviously (F—X) is

not Fredholm.

4. An asymptotic eigenspace. In this section we shall study the

condition "ker (F—X) is not an asymptotic eigenspace." We shall

show that our condition follows from several mild hypotheses. We

recall that the angle between two subspaces Hi and H2 is the number

0G[O, if] such that cos 0 = sup(f, g) where the supremum is taken

over all unit vectors/ and g such that/Güi and gEH2. We say that

two subspaces, Hi and H2, are complementary provided that H

= Hi®H2.

Theorem 4. If ker (F—X) has an invariant complementary subspace

say Hi with a positive angle between Hx and ker (F—X) then ker (F—X)

is not an asymptotic eigenspace.

Proof. Note that a(T) = cr(F/ker (F - z)) KJ a(T/Hi) and

o"(F/ker iT — z))= {z}. Let p be an eigenvalue of F distinct from z

and choose gGker iT—p). Write g as g'+g" where g'Gker iT — z)

and g"EHi and note that (F-ju)g'Gker (F-z) and iT-p)g"EHi.

Since iT-p)g = 0 it must be that iT-p)g'= ~iT-p)g" is in the

intersection of ker iT — z) and M{\ hence (F—p)g' = 0 = iT—p)g". If

g'^0 then pEaiT/ker iT — z)) which is a contradiction. Thus g

= g"EHi and we conclude that ker iT—p)EHi. Since Hi has a

positive angle to ker iT — z) we conclude that ker (F—X) is not an

asymptotic eigenspace.

Corollary 1. If ker (F—X) reduces T then it is not an asymptotic

eigenspace.
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The next theorem will justify the terminology "asymptotic eigen-

space."

Theorem 5. // ker (F—X) is a finite dimensional asymptotic eigen-

space then there exists a sequence of eigenvalues }X„} with \n7é\ and a

sequence of unit vectors {gn} with g„Gker (F—X„) such that {gn} con-

verges in norm to a unit vector f where/Gker (T — X). Furthermore, if T

is bounded then X„—»X.

Proof. Because (T—X) is an asymptotic eigenspace for each n

we can find an eigenvalue X„ and unit vectors g„Gker (F—X„),

/nGker (F-X) such that (gn, /»>èl -1/». Since (g„, /„)^||g„|| ||/„||

we see that (g„, /„)—»1; using the fact that ||gn||2 = l =||/n||2 we con-

clude   that   (gn,   gn)-(gn, fn) = (gn,   gn"/»)—>0   and    (/„,   gn) ~ (fn, fn)

= (fn, (gn— fn))—*0. Thus \\gn— /n||2 converges to 0. Because the unit

ball in ker (F—X) is compact {/„} has a subsequence converging to

some /Gker (F—X). Clearly {gn} converges to/ and if F is bounded

then Tgn converges to 7/and ~Kn = (Tgn, gn) converges to X=(F/,/).

This gives rise to another condition which is sufficient for ker (F—X)

not to be a finite dimensional asymptotic eigenspace.

Corollary 2. Let T be a bounded operator. 7/X is not a limit point

for the set of eigenvalues of T then ker (F—X) is not an asymptotic

eigenspace.

The final two corollaries were called to the author's attention by

the referee.

Corollary 3. If T has the property that ker (F—X) is orthogonal to

ker iT—ß) whenever X^/x then T has no asymptotic eigenspaces.

Corollary 4. 7/ T has the property that the numerical radius of any

restriction of T to an invariant subspace is equal to the spectral radius

of that restriction then T has no asymptotic eigenspaces.

Proof. Use Lemma 5, p. 191, of [2] along with Corollary 3 above.

Remark. We note that Theorem 1 is not necessarily true when

ker (T—X) is an asymptotic eigenspace. Let S* be the adjoint of the

unilateral shift and recall that each X such that |X| <1 is a simple

eigenvalue for S* although S*H is clearly equal to H and thus S*H

is closed.
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