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ON ORDERED POLYCYCLIC GROUPS

R. J. HURSEY, JR.

Abstract. It has been asserted that any (full) order on a

torsion-free, finitely generated, nilpotent group is defined by

some F-basis of G and that the group of o-automorphisms of such

a group is itself a group of the same kind: Examples provided herein

demonstrate that both of these assertions are false; however, it is

proved that the group of o-automorphisms of an ordered, polycyclic

group is nilpotent by abelian, and polycyclic.

1. Introduction. It is well known that if G is a torsion-free, finitely

generated, nilpotent group, then G possesses a central series {1}

= FoQFiQ ■ ■ ■ Ç Fm = G such that Fi+i/Fi is an infinite cyclic group,

i = 0, 1, • ■ -, m — \. Ree (see [5] and [ó]) calls such a series an

"F-series of G." It is also clear that if Fi+i/F¿ = (xi+iFt), where

Xi+iEFi+i for ¿ = 0, 1, • • • , m — 1, then each element g of G can be

written uniquely in the form g=x'llx2 ■ ■ ■ xe™, where ex, e2, ■ ■ ■ , em

are integers. Ree [ó] calls the elements Xi, x2, ■ ■ ■ , xm an "F-basis of

G." It follows easily that the torsion-free, finitely generated, nilpotent

group G can be ordered lexicographically with respect to ex, ■ ■ ■ , em

as follows: For gi = x{lxf • • ■ x'™, g2 = x{'x$ ■ ■ ■ xf™, we put giíkgi

if and only if e,=fi for ¿=1,2, ■ • • , m, or et <ft for some t such that

l^i^w and e,=/,- for *■»!, 2, • • • , / —1. This lexicographic order

on G is said, by Ree [5], to be "defined" by the F-basis xx, x2, ■ ■ ■ , xm.

These concepts are used by Ree in [ó], where it is asserted that

any (full) order on a torsion-free, finitely generated, nilpotent group

is defined by some F-basis of G, and in the proof of Theorem 2 [ó],

which asserts that the group of o-automorphisms of a torsion-free,

finitely generated, nilpotent group is itself a torsion-free, finitely

generated, nilpotent group. Both of these assertions, as shown by

Examples 1 and 2 of this note, are false. While it is not possible to

establish a result as strong as the one suggested by Theorem 2 of [ó],

we can prove
i

Theorem. If G is an ordered, polycyclic group and if A denotes the

group of o-automorphisms of G, then A is nilpotent by abelian, and,

moreover, A is polycyclic.
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2. Definitions and notations. If G is a group on which there can be

defined a (full) order relation g with the property that a, b, x, y EG

and a ^ b imply xay^xby, then G is said to be an ordered group and á

is said to be an order on G. Associated with an order ^ on G is the

positive cone P(G) of G, P(G) = {x|xEG and l^x}. It follows that

the subset P(G) of the ordered group G has the following properties:

(i) P(G)r\P-i(G)={l};

(ii) P(G)P(G)CP(G);
(iii) x~iP(G)xQP(G); and

(iv) P(G)KJP-i(G)=G.
Conversely,  if G is a group which possesses a subset P(G)  with

properties (i)-(iv), then G is an ordered group with respect to the

relation g given by

a è b if and only if orlb E P(G).

A subgroup C of a group G ordered with respect to á is convex

(with respect to ^ ) if g E G, c E C, and 1 ̂  g ̂  c imply g E C.

H DEC are convex subgroups of the ordered group G with the

property that no convex subgroup of G lies strictly between D and

C, then D^, C is a jump in the chain of convex subgroups of G.

If G and Ü" are ordered groups and/ is a mapping of G into ii, then

/ is an o-homomorphism of G into iï if / is a group homomorphism of

G into Ü and /is order-preserving in the sense that a, bEG and a^ib

imply fia) ^ 2 fib), where á i and ^ 2 denote the orders on G and H,

respectively. Furthermore, if / is a one-to-one o-homomorphism of G

onto ÍT and if f~l is an o-homomorphism of H onto G, then / is an

o-isomorphism of G onto H. An o-isomorphism of an ordered group G

onto G is an o-automorphism of G.

If G is a group, then the series {l} =^4o^^i^ ■ ■ ■ ̂ An = G is a

cyclic normal (invariant) series of G if ^4 i is a normal subgroup of

Ai+i(G) and Ai+i/Ai is cyclic, i = 0, 1, ■ • • ,n — 1. A group G is ¿>o/y-

eyc/z'c if G possesses a cyclic normal series. Finally, by the length of a

polycyclic group G, we mean the number of infinite cyclic factors

Ai+i/Ai in any cyclic normal series of G. It is well known that the

length of a polycyclic group is an invariant for that group.

3. Proofs.
Example 1. Let G be the subgroup of the additive group of reals

which is generated by {l, V2} ; i.e., G = (l) + (\/2). By restricting

the natural Archimedean order on the reals to G, G is an Archimedean

ordered, finitely generated, abelian group, whence G possesses no

proper, nontrivial, convex subgroups.

Let {l} =F0QFiQ ■ ■ ■ çZFm = G be an P-series of G with corre-
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sponding F-basis fx,fi, • • • ,fm- Then, as G is polycyclic of length two,

m = 2, so that {1} = F0CF1CF2 = G, Fi = {fi) and F2/Fx=(f2Fx). Thus,
each element gEG can be written uniquely in the form eifi+eifi = g,

where ei, et are integers. Let ¿ i denote the order on G defined by the

F-basis fi,fi-
Now suppose thatg = ei/i-f-e2/2 and 0^xexfx+e2fi^eifi, where ex, e2,

and eí are integers. Then O^i —exfx+(eí — e2)/2. Thus, as O^ex and

0^— ex, ex = 0 and, hence, g = eifiE{fi)- Therefore, (f2) is a proper,

nontrivial, convex subgroup of G with respect to ait whence the

F-basis fi, fi cannot define the given Archimedean order on G.

Example 2. Let G = (ai) + (a2) + (a3), where (oi) is an infinite

cyclic group and where (ai) + (az) is isomorphic to the subgroup

77=<l)+((l/2)(l-f-V5)) of the additive group of reals. Let P(G)

= {»ûi|» is a nonnegative integer }U {x | xE\G — (ax),x = rax+sa2+tai,

and 5+(i/2)(l + \/5)>0}. It readily follows that P(G) defines an

order on G, say ¿> where for x, yEG, x^y if and only if (— x+y)

EP(G). It is easy to see that 0<ai, 0<a2, and 0<o3; also, P(G) is

not an Archimedean order on G as <Xi<5Ccx2 and ai<Kaz (i.e., nai<a2,

nai < as for all integers n).

We now define two o-automorphisms of G:

(i) d:ai—*ai, a2—><i3, 03—^02+03,

(ii) v:ai—>ai, a2-^a2+mai, as—>a3+nai,

where m, n are arbitrary nonzero integers.

It follows easily that d and v are automorphisms of G. We now show

that d is order-preserving: Let x = rai+sai+ta¡ and suppose 0<x.

If s = t = 0, then sc^rciX). Suppose, therefore, that O^s or 0?^/.

Then, without loss of generality, we may assume r = 0, so that x

= sa2+ttt3. Then 0<x is equivalent to 0 <s + (t/2) (I + -*/5), which is

equivalent to ( — 2s)/(l + \/5)<t. On the other hand, 0<(sa2+tas)d

= ttti+(s+t)a3 is equivalent to 3t+t-\/5> —s(l + \/5), which is true

if and only if t> -s(l + V5)/(3 + V5) = -2s/(l + V5). Thus, d is
order-preserving. An analogous argument establishes that v is also

order-preserving, whence d and v are o-automorphisms of G.

Let A = (d, v), so that A is a subgroup of the group of o-automor-

phisms of G. It follows easily that v= [v, d]d, whence vj^\ belongs to

each term of the lower central series of A. Therefore, A is not nilpo-

tent, and, as A is a subgroup of the group of o-automorphisms of G,

the group of o-automorphisms of the torsion-free, finitely generated,

abelian group G is not nilpotent.

We proceed now with the

Proof of the Theorem. Let {l}-<Ci^<C2 • • • -<Cn = G be the

chain of convex subgroups of G with respect to the given order on G.
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We observe here that as G satisfies the maximal condition for sub-

groups, this chain is necessarily of finite length and that this chain

is an invariant series of G (see [3]). Let 9EA- Then 6 induces an

o-automorphism on the ordered group Ct/Ct-i, for i=l, 2, • • • , n,

given by (cd-i)6'=ceCi-i-

For each i such that i^i^n, let Ai denote the group of all o-auto-

morphisms 6EA such that 6' centralizes Ci/G,_i, i.e., such that

(cCi-i)e' = âCi-i = cG,_i. Then A¿ is a normal subgroup of A for each i,

and A/Aj is isomorphic to a subgroup of the group of o-automorphisms

of d/Ci-i. But, each C¿/C<_i is an Archimedean ordered group (see

[l, p. 50]), whence the group of o-automorphisms of C,/C,_i is iso-

morphic to a subgroup of the multiplicative group of positive real

numbers (see [l, Corollary 3, p. 47]). Thus, A/A,- is abelian for i

— 1, 2, • • • , n. Hence, A/A0 is abelian, where A0 = D"!,1 A,-. Note that

Ao centralizes Ci/C,_i for each?, so that [C¿,Ao]cC¿_i,í = l, 2, ■ ■ • ,n.

Thus, by a result of P. Hall (see [2, Corollary to Theorem 3.8, p.

10]), Ao is nilpotent. Therefore, A is nilpotent by abelian.

Smirnov [7] has proved that, for a polycyclic group H, every

abelian subgroup of Aut(iï) is finitely generated, whereas Mal'cev

[4] has proved that any solvable group, all of whose abelian sub-

groups are finitely generated, is polycyclic. These results prove that

A is polycyclic.

As a final remark, I should like to thank Professors R. D. Bercov

and A. H. Rhemtulla for their invaluable assistance in the prepara-

tion of this paper and for the many fruitful discussions while this

author was a student at the University of Alberta.
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