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CHARACTERIZATION OF RINGS USING

QUASIPROJECTIVE MODULES. II

JONATHAN S. GOLAN1

Abstract. Semiperfect rings, semihereditary rings, and heredi-

tary rings, are characterized by properties of quasiprojective

modules over their matrix rings.

In [4], we characterized semisimple artinian, semiperfect, and

perfect rings by the behavior of quasiprojective left it-modules over

them. In this paper we will continue this method of characterization.

As before, R will always denote an associative ring with 1 and all

modules and morphisms will be taken from the category of unitary

left i?-modules unless otherwise specified.

Recall that a module M is quasiprojective iff, for every epimorphism

~k:M-*N, Hom(Af, X):Hom(Af, Af)—>Hom(Af, N) is also an epi-

morphism. Basic facts on quasiprojective modules can be found in

[6] or  [8].

An epimorphism ju: U—*M is a projective cover of M iff U is projec-

tive and ker(/x) is small in U. (A is small in B iff A+C = B implies

B = C); it is a quasiprojective cover iff (i) U is quasiprojective; (ii)

ker(/i) is small in U, and (iii) U/V is not quasiprojective for all non-

zero submodules V oí kerQjt). UM has a projective cover then it has

a quasiprojective cover unique up to isomorphism [8, Proposition 2.6].

We will also need the following facts about quasiprojective

modules: If M is quasiprojective then so is Mn (the direct sum of n

copies of M) [7]. If AT is quasiprojective and A is a stable submodule

of M (that is to say, NaÇZN for any endomorphism a of M), then

M/N is also quasiprojective.

1. A change-of-rings theorem. Let R, S be associative rings with

1 and let T : it-mod—»S-mod be a covariant functor from the cate-

gory of all unitary left i?-modules to the category of all unitary left

S-modules. Let EflX be a full subcategory of i?-mod. Then T is called

a local category equivalence at 9TC iff there exists a covariant functor
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T'\ S-mod—>R-mod such that the pair consisting of the restriction

of T to 311 and the restriction of T' to F(9TC) is a category equivalence.

That is to say, iff T'T and TT' are naturally equivalent to the respec-

tive identity functors on 3ÍI and F(3TC).

1.1 Theorem. Let M be a left R-module and 2HX the full subcategory

of i?-mod the objects of which are all homomorphic images of M. Let

T:R-moà—»S-mod be a local category equivalence at 9TC. Then M is

quasiprojective iff T(M) is quasiprojective.

Proof. Assume M is quasiprojective and let a:M—>N be an R-

epimorphism. Then for each S-homomorphism ß:T(M)—*T(N)

there exists an i?-endomorphism £ of M making the diagram

~T'T(M)

riß)

t
T'T(N)

commute. Applying T, we obtain in turn the commutative diagram

- -TT'T(M)
/

TT' (8)

T(M)- -^T(N)-m-TT'T(N)

proving that T(M) is quasiprojective. Conversely, if we assume T(M)

is quasiprojective then, applying the same argument we show that

T'T(M)=M is  quasiprojective.

We now apply this theorem to two specific cases :

(I) Let R be a ring and S = Rn, the full ring of nXn matrices over

R. If a'.M^N is an 2?-homomorphism, then a induces an S-homo-

morphism a' : Mn—*Nn defined by (mi, ■ ■ ■ , mn)a' = (mia, • • • , mna).

Conversely, if euES is the matrix the (1, l)-entry of which equals

Is and all other entries of which are 0, and if ß: U—>V is an S-homo-

morphism, then the restriction of ß induces an ic-homomorphism

ß":eiiU-+enV. The functors r:J?-mod—>S-mod and T':S-mod

-►.R-mod given by T(M)=Mn and F(«) =«', T'iU)=enU and

T'(ß) =ß" are category equivalences (see [5] for details). We there-

fore have:
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1.2 Corollary. Let R be a ring and S = R„. Then

(1) rM is quasiprojective iff siMn) is quasiprojective.

(2) sU is quasiprojective iff R(exxU) is quasiprojective.

(II) Let / be a two-sided ideal of a ring R and let S = R/I. Define

the functor T:R-mod->S-mod by T(M)=M/IM and, if a\M^N
is an i?-homomorphism, T(a)=a, where (m+IM)ä = ma+IM.

Conversely, every left S-module U can be considered as a left R-

module and every S-homomorphism as an it-homomorphism. This

gives us a functor T' : S-mod—>R-mod. TV is the identity functor on

S-mod. On the other hand, if M is a left it-module the annihilator of

which contains I, then T'T(N) =N ior all epimorphic images A of M.

We therefore have:

1.3 Corollary. Let M be a left R-module and I a two-sided ideal

of R contained in the annihilator of M. Then M is quasiprojective over

R iff it is quasiprojective over R/I.

2. The basic tool. In [4] we proved the following result, the proof

of which we shall restate for completeness :

2.1 Lemma. A sufficient condition for an epimorphism X: U—>M to

split is that U®M be quasiprojective.

Proof. Let iu, i m [resp. iru, itm] be the canonical inclusions into

[resp. projections from] U®M. Then iruK- U(BM—>M is an epi-

morphism and so, by quasiprojectivity, there exists an endomorph-

ism £ of U®M such that wM =l-iru\. Then (Ím&tu)). = i mit m = identity

on M, implying that X splits.

2.2 Theorem. Let X'.P-^-M be an epimorphism from a projective

module P onto a module M. Then

(1) M is projective iff P® M is quasiprojective.

(2) M has a projective cover iff P®M has a quasiprojective cover.

Proof. (1) follows immediately from Lemma 2.1. As for (2), if M

has a projective cover p:P'—>M then idp®fi:P®P'-*P®M is a

projective cover and so, as remarked above, P®M has a quasi-

projective cover.

Conversely, assume P ® M has a quasiprojective cover /x : Q—+P ® M.

Then the epimorphism pirP:Q-+P splits by the projectivity of P and

so Q=P®W. Without loss of generality we can therefore assume

Q=P®W and ;u=idp©,ti', where ¿u' is the restriction of ju to W.

Ker(ju') is a homomorphic image of ker(/¿) and so is small in W.

Furthermore, n':W—*M is an epimorphism.
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By the projectivity of P there exists a homorphism ß:P—>W such

that \—ßn'. Since X is an epimorphism, W = Pß-\-ker(jjt') =Pß by

smallness of ker(ju'). Since P®W is quasiprojective, ß splits by

Lemma 2.1 and so W is isomorphic to a direct summand of P and

hence is projective. This proves that p': W^>M is a projective cover.

Note. The above proof is based on a proof communicated to the

author by Anne Koehler.

3. Semiperfect rings. A ring R is [serai-] perfect iff every [cyclic]

left i?-module has a projective cover. In [4] we characterized [semi-]

perfect rings as rings over which every [finitely-generated] module

has a quasiprojective cover. The class of rings over which every

cyclic left R-module has a quasiprojective cover is considerably larger

and includes, for example, all commutative rings. (In fact, if R is com-

mutative and i" an ideal of R, then / is stable and so R/I is quasi-

projective.) However, we do have the following characterization:

(3.1) Theorem. The following are equivalent for a ring R:

(1) R is semiperfect.

(2) For all n^l, every cyclic Rn-module has a quasiprojective cover.

(3) There exists an n>\ such that every cyclic Rn-module has a

quasiprojective cover.

Proof (1)=>(2) follows from the fact that if R is semiperfect so is

R„ for all m^I [5, Theorem 3] and (2)=*(3) is trivial. Therefore as-

sume (3) and let n>\ satisfy the condition that every cyclic i?„-

module has a quasiprojective cover. Let L be a left ideal of R, Ln the

left ideal of R„ consisting of all matrices with entries from L. Let

eaERn be the matrix with \r in the (i, j) position and zeros else-

where. Then R„/Lneu is isomorphic to P®M, where M = Rneu/Lneu

and P = 22?_2 Rneu. P is clearly i?„-projective and the map \:P—*M

which sends [an] to [o,7]c2i+L„eu is an i?„-epimorphism. Since

P®M has a quasiprojective cover, by Theorem 2.2(2), M has a

projective cover ju: IF—>M over Rn- (eiiW)p = eii(Wn) =euM which is

isomorphic, as an i?-module, to R/L. W is i?„-projective and so

enW is i?-projective [5]. The induced i?-homomorphism ¡i'\euW

—*R/L is then a projective cover, proving (1).

4. Hereditary and semihereditary rings. A ring R is left [semi-]

hereditary iff every [finitely-generated] left ideal of R is projective.

Equivalently, R is left [semi-] hereditary iff every [finitely-generated]

submodule of a projective left 2?-module is projective [l, pp. 14-15].

R is a left PP-ring iff every principal left ideal of R is projective.
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We will need the following result of Colby and Rutter [2, Proposi-

tions 2.3 and 2.4]:

4.1 Theorem. A ring R is left [semi- ] hereditary iff the endomorph-

ism ring of every [finitely-generated] free left R-module is a left PP-ring.

4.2 Lemma. A ring is a left PP-ring iff every principal left ideal of

R2 generated by a diagonal matrix is quasiprojective.

Proof. Let R be a left PP-ring and let K be the left ideal of R2

generated by ß °]. Then, by Corollary 1.2, K is quasiprojective over

Rt iff exxK=Ra®Rb is quasiprojective over R, which is the case since

R is left PP. Conversely, let aER and let K be the principal left ideal

of R2 generated by [¡5 ?]. Then K is quasiprojective over R2 and so

enK=Ra®R is quasiprojective over R. Since R maps epimorphically

onto Ra, this implies that Ra is projective by Theorem 2.2.

4.3 Theorem. The following are equivalent for a ring it:

(1) R is left semihereditary.

(2) Every finitely-generated submodule of a projective left R-module

is quasiprojective.

(3) Every finitely-generated left ideal of Rn is quasiprojective, for

all ra^l.

(4) Every principal left ideal of Rn is quasiprojective, for all n 2ï 1.

Proof. (1)=>(2) and (3) =»(4) are trivial. (2)=>(1): Assume (2)

and let A be a finitely-generated submodule of a projective left

P-module P. Then there exists a finitely-generated projective module

P' which maps epimorphically onto N. P'®N is then a finitely-

generated submodule of the projective module P'®P and so is

quasiprojective. By Proposition 2.2 this implies that N is projective,

proving (1).

(1)=>(3) follows since, if R is left semihereditary, so is Rn for all

w^l [5]. (4)=»(1): By Lemma 4.2, (4) implies that Rn is a left

PP-ring for all n ^ 1 and so (1) follows by Theorem 4.1.

4.4 Theorem. The following are equivalent for a ring R:

(1) R is left hereditary.

(2) Every submodule of a projective left R-module is quasiprojective.

(3) Every principal left ideal of E is quasiprojective, where E is the

endomorphism ring of a free R-module.

Proof. The proof is along the same lines as that of Theorem 4.3,

remembering that if if is a free module with endomorphism ring E,

M® M is free with endomorphism ring isomorphic to E2.
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5. Rings over which submodules of quasiprojectives are quasi-

projective. By Theorems 4.3 and 4.4., a sufficient condition for R

to be left [semi-] hereditary is that every [finitely-generated] sub-

module of a quasiprojective left i?-module be quasiprojective. The

converse is not true. To see this, let Z be the ring of integers, which is

left hereditary. Then 8>Z is a stable submodule of Z and so Z/&Z is

quasiprojective over Z. Hence so is M = Z/8Z®Z/8Z. Let N = 2Z/8Z

®Z/8ZQM. Then the epimorphism \:Z/8Z->2Z/8Z (x\ = 2x) does

not split and so N is not quasiprojective.

5.1 Theorem. Let R be a ring over which [finitely-generated] sub-

modules of quasiprojective modules are quasiprojective. Then every

factor ring of R is left [semi-] hereditary. If R is left perfect then the

converse also holds.

Proof. Let / be a two-sided ideal of R, S = R/I. Let P be a projec-

tive left S-module with [finitely-generated ] submodule M. By

Corollary 1.3, P is quasiprojective as a left i?-module and hence, by

hypothesis, so is M. M is then quasiprojective as a left S-module.

By Theorems 4.3 and 4.4, this proves that S is left [semi-] hereditary.

Conversely, assume that R is left perfect and let Ç be a quasiprojec-

tive left i?-module with [finitely-generated ] submodule M. Let I

be the annihilator of Q in R, S = R/I. Since R is left perfect, Q has a

projective cover and so is projective over S [3, Theorem 2.3]. By

assumption S is left [semi-] hereditary and so M is projective over

S. By Corollary 1.3, M is then quasiprojective over R.

5.2 Theorem. The class of rings over which [finitely-generated]

submodule of quasiprojective modules are quasiprojective is closed under

taking factor rings and matrix rings.

Proof. By an easy application of Corollaries 1.2 and 1.3.

Added in proof. It has been called to the author's attention that

the results credited to [2] were first proven by Stephenson and

Tsukerman, Endomorphism rings of projective modules, Siberian

Math. J. 11 (1970), 228-232. (Russian)
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