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ENTROPY AND DENSITY

GEORGE H. STEIN

Abstract. We prove that for any r, "entropy =r" is a dense

condition in the uniform topology.

In 1959, Rohlin [5] proved the set of transformations with zero

entropy is a dense G¡ in the uniform topology. See Parry [3, p. 103]

for a proof. In this note, we prove:

Theorem. For each r, <x>¡ír>0, the set of transformations with

entropy equal to r is dense in the uniform topology.

For the weak topology, the analogous theorem can be proved easily

with the aid of the conjugacy lemma (Halmos [2, pp. 77-78]): the

conjugacy class of an antiperiodic transformation is dense. To com-

plete the proof requires only the existence of antiperiodic trans-

formations with arbitrary entropy (Lemma 1, below). The conjugacy

class of an antiperiodic transformation is never dense in the uniform

topology. However, a simple lemma enabling one to compute the

entropy of a transformation in terms of its entropy on invariant pieces

provides the key.

More precisely, we consider the unit square with Lebesgue measure;

transformations which are bijections, measurable together with their

inverses, and measure-preserving. (The results are true for Lebesgue

spaces with nonatomic measure, but we choose the unit square for

ease in picturing a certain construction.) The uniform topology on

transformations is given by the metric: ¿(5, T) =mi{x:Sx9£Tx\).

See [2, pp. 61-68] for more information.

Computation Lemma. Let T:I2—*I2 be a transformation with

{M, N} a measurable partition, each element of which is invariant. Then

hiT) = KTm)\ +k(T\N).

Notation. | denotes restriction, capital Greek is used for partitions,

V denotes smallest common refinement, h is the entropy function,

etc. as in Billingsley [l ].

Remark. This follows from the more general formula of Rohlin

[4, p. 28]. However, a direct proof is easy.
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Proof. A(P)=suprÀ(r, P) by definition. If rCA,A(r, T)£h(A, T).
So, noting that TCTV {M, N}, without loss of generality, we may

assume that all partitions refine {M, N}. Now

*(r, T) = lim — H(T V • ■ ■ V T^T)
n->«   n

= lim - 2^ miA) \og(m(A))
»-»■>   n  ¿erv...vrn_1r

-1 ^
= lim- ¿j m(A) log(w(^))

«      n  ^e(rv...vr"->r)^M

+ lim- 23 m(A) \og(m(A))
»      n  AG(rv...VTn'1r)i^N

= lim — H(T H M V • • • V T\m\t f\ M))
n     n

+ lim — h(t n a v • • • V F|rx(r H A))

(since (r v ■ ■ • V rn-ir) n m= (rnjf)v

V T \"M 1(T r\ M) by invariance)

= h(T r\M,T \M) + h(Y C\ N, T \N).

As T ranges over refinements of {M, N}, TT\N and Ti^M range over

partitions of N and M respectively. Hence, by positivity,

h(T) = sup h(T, T) = sup {h(T HM,T \M) + h(T f~\N,T |at) }
r r

= sup h(A, T \m) + sup h(&, T \N) = h(T \M) + h(T |w).    Q.E.D.
a e

Corollary. The analogous formula is true when the elementwise in-

variant partition is countable.

This follows from  the  more powerful  theory developed  in   [3,

Chapter 2] which deals with the difficulties that countable partitions

raise. Every step follows exactly as above.■

Lemma  1. There is an antiperiodic  transformation  on the  unit

square with any prescribed entropy.

Proof.  Arbitrary  Bernoulli shifts  can  be  made  conjugate  to

transformations on the unit square precisely in the same manner as
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the shift 5(1/2, 1/2) is made conjugate to the Baker's transformation

on the unit square. See [l] and [2] for more on Bernoulli shifts.

Since conjugation preserves entropy [l, pp. 64-65], these transforma-

tions have entropy — 2î=î P* l°g Pi- Given r> 0, there is an n, and

iPi)\~" such that — /.)!" Pi log pi = r. This follows from the inter-

mediate value theorem and the fact that, for fixed n, the function

i=»

fiPl,   ■   ■   ■   , Pn)   =   -   2 Pi log Pi
i-1

subject to the constraints: ¿>,->0. y,j>.-= 1. has a maximum equal to

log n—»» as w—>co. For r = », we conjugate the shift on countably

many symbols,

5(1/2,1/4,1/16,- • -, 1/22»,.. .,1/2»*,'...),

22»-n-l t¡mes

to a transformation in the unit square.

All Bernoulli shifts are antiperiodic.    Q.E.D.

The following lemma is used tacitly hereafter.

Lemma 2. If EEI2 has positive measure, then E is isomorphic to I2

in the sense that there is a measurable, invertible measure-preserving

bijection which preserves the normalized inherited measure.

This follows easily from Halmos' lemma [2, p. 74].

Notation. Let T be a transformation. Define

En = {x: T"x = x; T'x^x, 0 ^ / < n} ;

£M= {x: TnX9^x for all n]. These form a countable measurable parti-

tion each element of which is T-invariant. If {A, B} is a measurable

partition, define ¿¿(S, T) =mi{xEA :Sx?*Tx}). Then d(5, T)

= dAiS,T)+dBiS,T).

Proof of the Theorem. Let F be a transformation. We dis-

tinguish two cases: either

(i)  almost every point is periodic; or

(ii)  the set of nonperiodic points has positive measure.

(i) By the corollary to the computation lemma, and the fact that

periodic transformations have zero entropy, A(T)=0. Hence it

suffices to find an invariant set of small measure: on this we may

construct a transformation of arbitrary entropy by Lemma 1, and

then apply the computation lemma. For some n, m(£„)>0. Find a

set YEEn such that e/«>w(F)>0. Then Y\J ■ ■ ■ KJTn~lY is in-

variant and of small enough measure.
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(ii) We reduce case (ii) to case (i) by use of the following fact:

arbitrarily near any transformation T is an 5 which has almost every

point periodic. The uniform approximation theorem of Halmos

[2, p. 75] applied to T\ En:Em—>P00, yields, for any n and e, a P':P„

—>PW which has period n and is within i/n+e of P. Choosing n

large, defining 5 to be T on P — Ex and to be T' on EK, we have

d(S, T) = dB„(S, T) + di*_Br>(S, T) = 1/n + e + 0 < 2«.     Q.E.D.

Remark. From (ii) above it follows easily that periodic trans-

formations are dense, a result used in [3, p. 103].

Proof. Take S as above in (ii). If 5 is periodic, we are done. If not,

choose Aso that e>w(Un>v P„)>0. Then SIUosmsw E„ is periodic of

period at most A! On U»>jv E„, modify 5 to be periodic with period

Nl The resulting transformation is periodic and within 3e of an

arbitrary P.
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