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APPLICATION OF LIAPUNOV'S DIRECT METHOD
TO FIXED POINT THEOREMS

J. H. GEORGE,1 V. M. SEHGAL AND R. E. SMITHSON

Abstract. The direct method of Liapunov is applied to the ex-

istence of fixed points for multivalued functions. Many recent fixed

point theorems are shown to be special cases of the Liapunov

theory.

1. Introduction and definitions. Liapunov's direct method has been

one of the major tools in solving many problems of ordinary differen-

tial equations. For example, Yoshizawa [9] has used this method to

obtain necessary and sufficient conditions for the continuability of

solutions of ordinary differential equations. The purpose of this paper

is to use Liapunov theory to prove certain fixed point theorems for

multivalued functions.

Further we shall obtain as corollaries to the main theorem the

results of Belluce and Kirk [l], Browder and Petryshyn [2], Diaz

and Metcalf [3], Edelstein [4], Nadler [5], and others.

Let (X, d) be a metric space and let F:X—*X be a multifunction

on X into X. (A multifunction is a correspondence on X such that

F(x) is a subset of X for each xEX.) We shall use the word function

in case F is single valued and we shall usually use / to denote the

function. In the following F will denote a multifunction on the metric

space X into X.

Definitions. (1) The multifunction F is point closed (compact)

if and only if F(x) is closed (compact) for each xEX.

(2) The multifunction F is upper semicontinuous (u.s.c.) if and

only if whenever F(x) E V, an open set, then there is an open set U,

containing x, such that F(y) E V for all y EU.

(3) The multifunction F is lower semicontinuous (l.s.c.) if and only

if F(x)í\ Vt¿0, where V is an open set, implies that there is an open

set U containing x such that F(z)r\V?i-0 for all zE U.

(4) Finally F is continuous if and only if it is both u.s.c. and l.s.c.

If    A EX,    let    F'\A) =  {x:F(x) í\ A ^ 0],    and     F(A)
= U { F(x):xEA }. Further, cl(A) denotes the closure of A, and A0 the

interior.
_

Received by the editors May 3, 1970.

A MS 1969 subject classifications. Primary 5465, 5485.

Key words and phrases. Contractive multivalued functions, fixed point theorems,

orbits for multifunctions, cluster points of orbits, Liapunov theory.

1 This author was partially supported by NAS 8-21434.

Copyright © 1971, American Mathematical Society

613



614 J. H. GEORGE, V. M. SEHGAL AND R. E. SMITHSON [May

We extend the notion of the orbit of a point in the following way.

Let xoEX. Then an orbit of Xo is a sequence {xn, nEW, the positive

integers} such that xnEF(xn-x) for »gl. Note that, since we are

considering multifunctions, a point may have many orbits. We denote

an orbit of x by 0(x), and we also use this symbol to denote the range

of the sequence.

Definitions. (1) The multifunction F is sequentially continuous on

an orbit 6(x) if and only if there is a convergent subsequence xn—*yo

of 6(x), such that for each kEW, there is an element ykEF(yk-x) such

that xni+k-^yk.

(2) Also we say that F satisfies a Lipschitz condition if and only if

there is a real number aj^O such that for x, yEX, and wEF(x), there

is a z£F(y) such that d(w, z) ^ad(x, y).

Note that each continuous single valued function is sequentially

continuous on each orbit which contains a convergent subsequence.

The proof of the following lemmas can be constructed directly from

the definitions and are omitted. (See Smithson [ó] or Ströther [8] for

basic results on multifunctions.)

Lemma 1.1. Let F be an upper semicontinuous, point closed multi-

function. If Xn—*Xo, and yn—>y0 where y„EF(xn), then y0EF(x0).

Lemma 1.2. // Fis point compact and satisfies a Lipschitz condition,

then F is continuous.

Lemma 1.3. // Fis point compact and u.s.c, if xn—*x0 and ifynEF(x„)

for each n, then there is a yoEF(xo) and a subsequence yn—*yo-

Remarks. (1) Let F be point compact and u.s.c. Then if 0(x) con-

tains a convergent subsequence we can construct a subsequence

xn¡—>yo of 6(x) such that x„i+x—*yxEF(yo) and inductively such that

Xni+k—>ykEF(yk-i).

(2) By applying a diagonal process to the results in Remark 1, we

can show that any point compact u.s.c. multifunction is sequentially

continuous on each orbit which contains a convergent subsequence.

Further, the same kind of reasoning will establish the following

lemma.

Lemma 1.4. If F is l.s.c. and 6(x) contains a convergent subsequence,

or if F is u.s.c. point closed, and X is compact, then F is sequentially

continuous.

Definition. Let 6(x) be an orbit of x. Then a Liapunov function

for Fon 6(x) is a continuous single valued function V:X—»i? such that
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(i)   V(xH+i) ̂  Vix„) for all x„G0(x) and

(ii)   V is bounded below.

Remark. For many of our results we need only define Foncl(0(x)).

As an example of a Liapunov function, let X=[0, l] and let

0<cu<l. Then define Fix) = [0, ax], and for x0EX, let 0(xo)

= {x„:x„=ctXn-i=ctnXo,n èl}. Then set F(x)=x; then F will be a

Liapunov function for Fon 0(x).

Finally a fixed point of Fis a point such that xE Fix).

2. The main theorem. The main theorem of this paper depends on

the following fundamental property of Liapunov functions.

Lemma 2.1. Let V be a Liapunov function on the orbit Qix). If there

is a convergent subsequence x„—*y0 of 0(x) such that x„i+i—>yi, then

Viy0) = F(yi), and ifxni+k—>yk, then Viy0) = V(yk).

Proof. Since x„—»y0 and since V is continuous, F(x„,.)—>V(y0) and

V(xKi+i)—*Viyi). Furthermore, F(x„i+i) ^ F(jcBi) and therefore F(yi)

= F(y0). On the other hand, F(x„y) ^ F(x„i+1) for j>î", and so

F(y0) ^ F(yi). The final statement follows by induction.

Theorem 2.2. Let F:X—+X and let 0(x) be an orbit for F at x with

convergent subsequences xni—>y0 and xn<+k^>yk for k = l, ■ ■ ■ , m. If

there is a Liapunov function V on 0(x) such that yo^y* implies that

Viyo) ^ Viyk) for some k, l^k^m, then y0 =yk- Further, if k = 1 and

yiEFiya), then y ois a fixed point.

Proof. By Lemma 2.1, V(y0) = V(yk) and hence, the hypothesis

implies that yo = yi-

At first Theorem 2.2 appears to be trivial. However, the conse-

quences of this theorem are many of the well-known fixed point

theorems as we will show later. The key point is of course the exis-

tence of the Liapunov function V which distinguishes limit points.

In the sequel we shall obtain a number of results by constructing such

a Liapunov function. A major result in this direction is:

Lemma 2.3. If F:X^>X is continuous and point compact, then

V(x) =d(x, F(x)) defines a continuous function on X into R.

Proof. Note that since F(x) is compact, there is a yEF(x) such

that d(x, y) —d(x, F(x)). Then suppose that x„—>x0, and let y„GF(x„)

such that d(xn, yn) =d(xn, F(xn)). Since F is u.s.c. and point compact,

some subsequence yn—>yo converges to a point in F(xo). Then if

¿(xo, F(x0))=d(xo, y0), the continuity of the metric d implies that

F(x„)—»F(xo). Thus suppose there is a y'EFixo) such that d(x0, y')
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<d(x0, yo), and set e= (d(x0, y0)—d(xo, y'))/2. By applying the l.s.c.

of F, we can find an n and a znEF(xn) such that d(y', z„) <e. But this

implies

d(x„, F(x„)) ^ d(x„, z„) < d(x„, yn) = d(x„, F(xn))

which is a contradiction. Hence, V(xn)—>V(x0) and V is continuous.

As examples of the applicability of Theorem 2.2 we present the

following corollaries. Corollary 2.5 is a result of Nadler [5].

Corollary 2.4. Let F:X—>X be a continuous point compact multi-

function on X. Let 6(x) be an orbit for F which contains a convergent

subsequence. If the function V defined by V(x) =d(x, F(x)) is decreasing

on 0(x), and if V(xn)—»0, then F has a fixed point.

Proof. By hypothesis and Lemma 2.3, F is a Liapunov function

on 0(x). Further, if xn—»y0, we may assume xni+i—>yiEF(y0) by the

remark following Lemma 1.3. Then the result follows from Theorem

2.2.

Corollary 2.5. // X is compact, if F is point closed and satisfies a

Lipschitz condition with a < 1, then F has a fixed point.

Proof. Construct Q(x) by choosing x„£F(x„_i) so that d(xH, x„_i)

= d(xn-i, F(x„-i)). Then the Lipschitz condition shows that V is

decreasing on 6(x), and if x„.—>y0, x„i+i—>yi, then yo^yi implies

F(yo) 9e V(yi). Hence, F has a fixed point.

Remark. If F in Corollary 2.5 is single valued, then we have a

variation on the classic theorem on contraction mappings. In this

case we would obtain a unique fixed point. However, we cannot ob-

tain a unique fixed point for multifunctions. For if F(x)=X for all

xEX, then F satisfies a Lipschitz condition with any constant a>0.

But every point in X is a fixed point. Finally the assumption that X

is compact in Corollary 2.5 can be replaced by X complete.

3. Applications of the main theorem. In this section we obtain

generalizations of several well-known fixed point theorems for single

valued functions.

Definitions. The multifunction F:X—>X is:

(1) contractive iff for all xy^yEX and for each zEF(x) there exists

a wEF(y) such that d(w, z)<d(x, y);

(2) t-locally contractive iff for all x^yEX with d(x, y) <e and for

all zEF(x), there is a wEF(y) such that d(z, w)<d(x, y);

(3) nonexpansive iff F satisfies a Lipschitz condition with a = 1 ;

(4) said to have diminishing orbital diameters iff whenever each

orbit of x has positive diameter, then
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lim o{xk:k ^ n) < inf{s(0(*)):for each e(x)\
71

where the terms xk are the terms of a particular orbit and where biA)

denotes the diameter of the set A.

We state without proof the following lemma.

Lemma 3.1. If F satisfies any of (1), (2), or (3) and if F is point

compact, then F is continuous. Hence, F(x) =á(x, F(x)) defines a con-

tinuous function on X.

In the following V will denote the above function unless otherwise

stated.

Definition. An orbit 0(x) is called regular iff d(x„, xn+i)

= dixn, F(x„)) for all n.

Remark. If F is nonexpansive and point compact, then the func-

tion V is decreasing on regular orbits, and hence, is a Liapunov

function.

The next theorem is essentially a theorem of Smithson [7] which

is a generalization of a theorem of Edelstein [4].

Theorem 3.2. If F:X-^>X is a contractive, point compact multi-

function, and if there is a regular orbit for F which contains a convergent

subsequence, then F has a fixed point.

Proof. Let 0(x) be a regular orbit, and suppose that xn¡—»yo, and

xni+i—>yiEF(yo) (see the remark following Lemma 1.3). By Lemma

3.1, and the remark, F is a Liapunov function on 0(x). Finally, if

yo^yi then, since F is contractive, F(yi) < V(y0) (see the proof of

Lemma 2.1). Thus yo = yi and F has a fixed point.

Corollary 3.3. // F:X^>X is a contractive, point closed multi-

function on the compact space X, then F has a fixed point.

Another corollary to Theorem 3.2 is easily obtained, but first we

need the following definition.

Definition. A single valued function /:X —>X is almost periodic at

pEX iff for each e>0 there is an «such that dif"ip), p) <€.

Corollary 3.4. If f:X-^X is a contractive function which is almost

periodic at p, then f(p) =p.

We also obtain the following result on periodic points of e-locally

contractive mappings.

Theorem 3.5. Let F be an e-locally contractive, point compact multi-

function on X. If 0(x) is a regular orbit which contains a convergent
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subsequence, and if F is sequentially continuous on 0(x), then there is a

positive integer m such that F"1 has a fixed point.

Proof. Let xn—*yo be a convergent subsequence of 0(x), and let

x„i+*—>y* where ykE F(yk-x) for each k^l. Pick Af such that¿(xni, xnj)

<«/4 for all i, j> N. Then since 0(x) is regular and F is an e-locally

contractive multifunction, d(xni+k, xHj+k) <«/4 for k^O. Fix i> N and

set m = »,+i — w¿. Then w¿-f-m = w¿+i and thus d(x„i+m, xni)<e/4. By

combining these inequalities we deduce that d(y0, ym) <«•

Now let Y= {x„i+i:l = km, k^Q}VJ {y,:j = km, k^O], and define

g: Y^>Y by g(xnj) =x„i+m and g(yf) = y3+m. Then g is an e-locally con-

tractive function on F into Fand V(z) =d(z, g(z)) defines a Liapunov

function for g on 0(xn<) in Y. Furthermore, if yo^Vm, then V(y0)

v6 V(ym). Thus Theorem 2.2 implies that yo = ym and hence, yoEFm(y0).

Lemma 3.6. Let F be a nonexpansive function. If there is an xEX

which has an orbit with finite diameter, then there is an orbit with finite

diameter for every zEX, and the function

V(z) = inf{S(0(z)):0(z) an orbit of z}

is uniformly continuous.

Proof. Suppose that 0(x) has finite diameter, and let zEX. Pick

ZiGF(z) such that d(xx, Zi) ̂ d(x, z), and inductively pick zB£F(z„_i)

such that d(x„, z„) ¿d(xn-i, zn-x)- Then

d(zn, zm) ^ d(z», xn) + d(xn, zm) ^ d(zn, x„) + d(xn, xn) + d(xm, zm),

and both statements follow from this inequality.

We now can obtain the following theorem of Belluce and Kirk [l].

Theorem 3.7. Let F be a nonexpansive multifunction with diminish-

ing orbital diameters. If there is an orbit, 0(x), which contains a conver-

gent subsequence on which F is sequentially continuous, then F has a

fixed point.

Proof. Let xn—>y be a convergent subsequence of 0(x) and let

x„i+k—*yk- Then the function V defined in Lemma 3.6 is a Liapunov

function on 0(x), and if y(£F(y), then 5(0(y))>0 for all orbits of y.

Thus there is an m such that ym has an orbit 6(ym) with

8(0(y»)) < inf{5(0(y)):0(y) an orbit of y}.

This implies that V(ym) < V(y) and hence, Theorem 2.2 applies. Thus

yEF(y).
We can obtain a corollary to Theorem 3.7 analogous to the corol-

lary to Theorem 3.2.
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Diaz and Metcalf [3 ] considered continuous single valued functions

for which the set of fixed points was nonempty. Theorems 3.8 and 3.9

are partial generalizations of their results. In the following £F(F) will

denote the set of fixed points of a multifunction Fand 0(x) will be an

orbit of x. Then we set £(x) equal to the set of subsequential limit

points of 0(x). We shall also assume that Fis sequentially continuous

on 0(x).

Theorem 3.8. // <5iF)^0 and compact, and if whenever zE^iF),

and wEFiz), we have á(w, JF(F)) <d(z, ^(F)), then £(x)C3r(F), and if

£ (x) = {y} isa singleton, then lim xn = y.

Proof. For the first statement define V on cl(0(x)) as follows. If

x„G©(x), set F(x„)=¿(xn, í?(F)) and extend V to cl(0(x)) by taking

limits. Then F is a Liapunov function on cl(0(x)). Let x„,.—>y and

x„i+i—>yi. Then if y$F(y), F(yi) < F(y). Thus Theorem 2.2 implies

that yEFiy), that is £(x)C3r(F).

Now suppose that £(x) = {y}. Then since î(F) is compact, for each

x„G0(x), there is a z„E$iF) such thatd(x„, i(F)) = d(x„,z„). Further-

more, by the hypothesis in the theorem, if m>n, then d(xm, zm)

<d(x„, zn). Now suppose that x„,.—»y but that 0(x) does not converge

toy. Then there is an e>0, and a subsequence {xm¡ }yof 0(x) such that

dixmj, y)=«. Let z be a cluster point of the sequence {zmy},-. Then,

since d(x„, iF(F))—>0, there is a subsequence of {xm¡},- which converges

toz. But d(z,y)^€ which contradicts £(x) = {y}.

Theorem 3.9. // ÍF(F)?¿0, and if for each z$i$iF), and each

wEFiz), we have diw, p) <¿(z, p) for all pE$iF), then either £(x) is

empty or a singleton.

Proof. Let p be a fixed element in ï(F), and set Viz) =diz, p) for

all zEX. Then if x„,—*y, F is a Liapunov function on 0(x) which

satisfies the conditions of Theorem 2.2. Thus yE$iF). Now if xm—*Zi,

thenziGiF(F),andif €>0, there is an «, such thatd(y,zi) ^¿(xB>., Zi)+e.

But if *»,->«,-, dixmj, Zi) ̂ ¿(xni, zi) by hypothesis, and hence, d(y, Zi)

= 0. Thus £(x) is a singleton if £(x) is nonempty.

Finally, we obtain a generalization of a theorem of Browder and

Petryshyn [2] for nonexpansive mappings which are asymptotically

regular.

In the following we shall assume that for each zEX, there is an

orbit 0(z) such that d(z„, zn+i)—»0, z„, z„+iG©(2).

Theorem 3.10. Let 0(x) be an orbit such that ¿(x„, x„+i)—»O mono-

tonically and suppose that F is sequentially continuous on 0(x). i"/

xni->y, then yEFiy).
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Proof. Define V(xn)=d(xH, xn+x) on 0(x) and extend to cl(0(x))

by taking limits. Then if xni+k—>yk, V(yk) =d(yk, y*+i), and d(yk, yk+i)

—»0. Thus if y 9eyi, there is a k such that V(yk) < V(y), and Theorem

2.2 applies. Th us y = yi and so y G F(y).
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