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A DISTORTION THEOREM FOR ANALYTIC FUNCTIONS

M. S. ROBERTSON1

Abstract. Let f(z) be a function analytic in the disk

E\z: \z\ <l} andfoi some real number n>0 let |/(z)| á(l-|z|,)-n,

zG£. In this paper it is shown that

l»r<S±F['-X^-I.M»r]
+ <1-   Ul2)"+1,

2Ë£ In the special case » = 1 there is a constant K, 3¿K¿A,

so that

I/CO I + |/W|2áX(i- |z|')-2.

This result has application in univalent function theory.

1. Introduction. For functions f(z), analytic and bounded in

modulus by one on the disk £l{z:|s| <l} it is well known that

|/'(z) |, the modulus of the derived function, satisfies the inequality

(1.1) \f(z)\   g£ '      |      ,        zEE.
1 —  | z|2

Recently Duren, Shapiro and Shields [2] have sketched a simple

proof, using a contour integral representation of/(z), that whenever

f(z) satisfies the growth inequality

(1.2) |/(z)|   á (1-  MV1,       zEE,

then

(1.3) |/(i) |   áC(l-  |z|2)-2,        zEE,

with the constant C^4. The estimate (1.3) is very useful in connec-

tion with computations involving the Schwarzian derivative of an

analytic function and problems relating to the univalency of such

functions (see for example [l], [2], [3], [4], [5]). The best or small-

est value of the constant C is apparently still unknown [see Research

Problem N, Bull. Amer. Math. Soc. 71 (1965), 857].
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In this note we extend the result given in (1.3) in several ways and

include both (1.1) and (1.3) as special cases of a more general formu-

lation. The method of proof appears to be new. It starts with the

inequality (1.1) and avoids the integral representation method of the

authors in [2] to obtain (1.3). In this way an additional term im-

proves (1.3) (see Corollary 3). The basic result appears in Theorem A.

Theorem A. Letf(z) be a function analytic in the disk E {z: \ z\ < 1}

and for some given real number n>0 let

|/(2)|   â (1- \z\2)-",       zEE.

Let A(r), B(r), C(r) be the nonnegative, continuous real functions of r

defined for 0 ^ r ^ 1 by the equations

A(r) = [(2n - 1)V4 + (12» + 2)r2 + l]1'2,

B(r) = [in + 1 - (2» - l)r2 - Air)]/i^n + 2),

C(r) = [4m + 1 - (2w - l)r2 + ¿(r)]"- [(In + 3)r2 - 1 + A(r)]

■ [(2w - \)r2 + A(r) + l]1'2 -H (4w)"(4r2)(4w + 2)1'2,

C(0) = lim C(r) = (1 + 1/2«)"-(2« + l)1'2.

Then for zEE

^C(\z\)[\-B(\z\)2»\f(z)\2]

(1 - | z|2)"+1

^ C(| z\ )[1 - (n/(n+ 1))2"-(1 - | z|2)2"- |/(g) |2]

(1 -  | z|2)"+1

Moreover,

C(\z\) ^ Cil) = (« + l)"+1/nn < ein + 1),       0 g  | z\   ^ 1.

Corollary 1. The inequality (1.1) follows from Theorem A as a

limiting case as n—»0 whenever f(z) is analytic with bounded modulus,

\f(z)\^l,zEE.

Corollary 2. If fiz) is analytic in E and if, for some n>0, \f(z) \

S(l — |z|2)_n, zEE, then there exists a smallest constant A, inde-

pendent off(z) and n, l^A^e, such that

\f'(z)\   S(n+l)A(l -  \z\2)-"-\       zEE.

Corollary 3. If f(z) is analytic and if \f(z) | g(l — |.z| 2)_1, zEE,

then there exists a smallest absolute constant K, 3 S K ^ 4, such that

I/'(2) |  + \fiz)\2ÛKil-  |z|2)-2.

/'(«)
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2. Proofs.  Let n be an arbitrary positive number.  Let f(z)  be

analytic in E and satisfy the inequality

(2.1) |/(f) |  g (1 - |z|2)-»,       zG£.

Let p be a real number in the open interval (0, 1) and define the

analytic function <j>(z) by the equation <p(z) = (1 — p2)n-f(pz). Then

0(z) is analytic on the closure of E and |<MZ)| =1 for |z| ¡gl. It

follows from the well-known inequality for bounded analytic func-

tions:

,       1-1 4>(z)\2
(2.2) *'(f)     ú    1     '|    iV   '        2G£'

1 —  | z|2

that

1 - (1 - p2)2"- |/(pz)|2
P(í-P2Y\f'(pz)\ ú—,    .y  ' >    f <i.

1 — | z|2

Let z=pV*+1)i*, (k + l)<p=e, pk+1=r where k>0. Then pz = re* and

1 _ (1 _ riHk+\)\in. | /"(re«) 12

(2.3) \f(re*)\   ^-—-^-
V 1J ' rl/«+D.(1   _ ril(k+l)\n.n   _ rikl(k+X)\

for 0 <r < 1 and 0 ^ 0 ;£ 27r. For fixed r we now choose k > 0 so that the

denominator

y  _   (rl/(4+l)   _  r(24+l)/(fc+l))(1   _  r2/(t+l)Jn

is maximized. For 0<r<l and r2=xk+1, 0<x<l, k>0, dy/dx =

-P(k, r)-Q(x) where

P(k, r) =-(log — lar^a - x)"-1 > 0
(¿+1)2\       r)

and

Q(x) = (2« + l)*2 - (1 + (2n - \)r2)x - r2.

Then when k—0, we have x = r2 and Q(r2) = — 2r2(\ — r2) <0, dy/dx

>0. When * = + «, we have x = 1 and Q(\) =2n(l-r2) >0. Thus the

maximum of y is attained by choosing x the sole positive root of

<2(*)=0.

1 +(2n - i)r2 + [(2n - 1)V + (12n + 2)r2 + l]1'2
(2.4) r2'<*+» = x =-'---— ■

An+ 2

This means that y is maximized by the following choice of k :



554 M. S. ROBERTSON [May

(2.5) k = í —
Líos

_ 2 log(l/r)

= Llog{U(r)-

where

>g{U(r)-l-(2«-l)r2)/2r2}

(2.6) Air) = [(2« - l)2r4 + (12« + 2)r2 + l]1'2.

It is clear by the method of construction that k > 0 and hence rG (0, 1)

implies thatp=rI,(*+1)G(0, 1).

For the choice of k given in (2.5) we have

4w+ 1 - (2»- l)r2- Air)
1 _ ,*/<*+» = Bir) =-—

4«+ 2

4n(l - r2)

(
(\   _ r2/(*+l))-n = I

4«+l - (2«- l)r2 + Air)

4« + 1 - (2» - l)r2 + Air)y

n _ r2*/(iM-i))-i =

4«(1 - r2) /

[1 + (2« - l)r2 + Ajr)][j2n + 3)r2 - 1 + Ajr)]

8(2« + l)r2(l - r2)

For the choice of k given in (2.5) we now have from (2.3) the in-

equality

1   _  (1  _r2/C*+l))2n. |/(fe«)|l

\f'irea)\   ^
rll(.k+l).(l   _  rîl(k+l))n.(l   _  r2kl(k+l)\

(2-7) Y

where .4 (r), J5(r) and C(r) are defined as in the statement of Theorem

A. It is easily seen that C(l) =(« + l)n+1/«B, 5(1) =0, 4(1) =2»+2.

We shall show that B(r) è(»/(« + l))(l-r2) and C(r)gC(l) for

w>0, Ogrgl.

The inequality 5(r) è(«/(« + l))(l-r2), or
!

4« + 1 - (2« - l)r2 - [(2m - 1)V4 + (12« + 2)r2 + l]1'2

^ (4« + 2)(«/(» + 1))(1 -r2),

reduces after simplification and squaring to the simple inequality

(8«2+4»)(l -r2)*^0 which is satisfied for »>0 and 0 gr g 1.

The   second   inequality   C(r) ^C(l) = (n + l)n+1/»B   for   «>0   is

equivalent to the inequality
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[4w + 1 - (2m - l)r2 + A(r)]"-[(2n + 3)r2 - 1 + A(r)}

■[(2n- \)r2+ 1 + A(r)}"2

á (4M + 4)"+1-(4w + 2)1'2-r2

where A(r) is given by (2.6). Since «>0 it is easily verified that

0 < 4m + 1 - (2» - l)r2 + A(r) g (in + 4)

with equality only for r = l. Hence the factor

[4» + 1 - (2m - l)r2 + A(r)]" g (4m + 4)",        n > 0.

Therefore, in order to obtain C(r) ^C(l) it is sufficient to show that

[(2« + 3)r2 - 1 + A(r)][(2n - l)r2 + 1 + A(r)]1'2

g (4» + 4)(4m + 2)"2-r2

for »>0 and Ogrgl. Squaring and simplifying we obtain

[1 + (2m + l)r2](2M + l)A(r)

è (2m + 1)[1 + 2(2m + 1)V* - (4m2 - i)f*].

Since the right-hand side of this last inequality is positive for 0 gr < 1

we may square again and obtain finally the inequality

16m2(1 - r2)[l + (4m2 + 8m + 3)r2] ^ 0,       m > 0,   0gr|l.

This completes the proof that C(r) gC(l) =w-B(n + l)n+1 for m>0,

and that Theorem A holds.

From Theorem A we have in particular, that if

(2.8) |/(f) |   S(l-  |z|2)-»,       m>0,     |z| <1,

then

(2.9) i/(«)i ^ i^r) • (1 n_ \z \^i < «»+*)« -1 « ir-'.

The factor e cannot be replaced by a constant A less than one as the

following example shows. Let «>0 be chosen arbitrarily small. Let

0<x<l. Then let

(2.10) /(f) = (t^-) (1 - «*)-,        I » I < 1.
M + x'f

It follows that |/(z)| g(l-|z|2)-", |f|<l. Moreover f'(-x)

= (l-x2)-»-1.
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If the factor e could be replaced by a constant A <1 the given

example shows that we would then have Ki(»Tl) for arbitrarily

small «>0, a contradiction.

For large values of « the estimate Ain + 1), l^A^e, in Corollary

2 is of the right order of n since the function (1 — z2)~n has for its

derivative the function 2«z(l—z2)~n_1. Indeed we have 2 —2(« + l)_1

£A£e.
In the particular case « = 1, C(l) =4 and we have

(2.11) |/'(z)|   +  \f(z)\2^K(l-  \z\2)-2, |z|   <1,

with K^4. If/(z) =(l-z2)-1 and if z = r, 0<r<l, we have

l/'to I   +  I/to I2 = (2r + 1)(1 - r2)-2 g 3(1 - r2)-2

and we conclude that the smallest constant K in Corollary 3 is at

least as large as 3. Thus 3^ K ^4.

As an application of Corollary 3 one can easily show that if f(z)

is analytic in E and satisfies the inequality

(2.12) |/"(z)//'(z) |   ¿1(1-1 212)"1,        2 G E,

then the Schwarzian derivative co(/, z) satisfies the inequality

,     I //"toY       1 //"to\21
(2.13) «(/, z)   =  ( — 1-(— — )    á 2(1 -    z 2)-2

1   W      '     \\f'iz)J       2 Xf'iz)/ I '   '/

for zEE, and consequently, by Nehari's Test [3],/(z) is univalent

for |z| <1. This is a slight improvement of a similar result given in

[2] where the constant 2(\/5—2) in (2.12), instead of the larger

constant 1/2, was found to be sufficient for univalency. The method

used here is elementary and probably the factor 1/2 in (2.12) can be

replaced by a larger one and still the inequality (2.12) would force

f(z) to be univalent in E.
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