PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 28, Number 2, May 1971

A DISTORTION THEOREM FOR ANALYTIC FUNCTIONS

M. S. ROBERTSON!

ABsTRACT. Let f(z) be a function analytic in the disk
E{s: |z| <1} and for some real number # >0 let If(z)l s@—| z| 3)-n,
3EE. In this paper it is shown that

( +1n+l 2n
ol 20 - () o ol

+ (1 - !ziz)n+l’

zEE. In the special case n=1 there is a constant K, 3<K<4,
so that

lr@| + | /@] = K — | sy

This result has application in univalent function theory.

1. Introduction. For functions f(3), analytic and bounded in
modulus by one on the disk E{z:|z| <1} it is well known that
| f(2) I , the modulus of the derived function, satisfies the inequality

(1.1) 1@ | éi-—lﬂz—)‘i, z € E.
1— |z

Recently Duren, Shapiro and Shields [2] have sketched a simple
proof, using a contour integral representation of f(z), that whenever
f(2) satisfies the growth inequality

(1.2) lfGa)| = (1 — |29, z€E,
then
(1.3) |fx| =ct— |29 z2€E

with the constant C=4. The estimate (1.3) is very useful in connec-
tion with computations involving the Schwarzian derivative of an
analytic function and problems relating to the univalency of such
functions (see for example [1], [2], [3], [¢], [5]). The best or small-
est value of the constant C is apparently still unknown [see Research
Problem N, Bull. Amer. Math. Soc. 71 (1965), 857].
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In this note we extend the result given in (1.3) in several ways and
include both (1.1) and (1.3) as special cases of a more general formu-
lation. The method of proof appears to be new. It starts with the
inequality (1.1) and avoids the integral representation method of the
authors in [2] to obtain (1.3). In this way an additional term im-
proves (1.3) (see Corollary 3). The basic result appears in Theorem A.

THEOREM A. Let f(2) be a function analytic in the disk E {z:|z| <1}
and for some given real number n>0 let

/)] = - |z|»™ z€E

Let A(r), B(r), C(r) be the nonnegative, continuous real functions of r
defined for 0<r <1 by the equations

A(r) = [@n — 1)r* + (120 + 2)r* + 1]112,

B(r) =[an+1— Q2n — )12 — A(N]/(4n + 2),

Cr)y=[an+1—-C2n— D2+ AW [2n + 3)r2 — 14 A(7)]
J@n — D)2+ A@) + 1]V2 =+ (dn)*(4r2) (4n + 2)112,

C(O) =limC(») = (1 + 1/2n)- (2n + 1)2.

Then for & E
c(| =DM = B(| z])*| /) |]

|f (z)l = (1 — |z|2)n+!
=Dl — /@t 1)) = [z [f@) ]
= a- I z‘2)n+l
Moreover,

C(|z|)éC(l)=(n+1)"+1/n"<e(n+1), 0= |z| <1

CoROLLARY 1. The inequality (1.1) follows from Theorem A as a
limiting case as n—0 whenever f(z) is analytic with bounded modulus,

|fz)| =1, zEE.

COROLLARY 2. If f(2) is analytic in E and if, for some n>0, | f()|
§(1—|z|2)—”, 2EE, then there exists a smallest constant A, inde-
pendent of f(2) and n, 1 £A Ze, such that

7@ £ e+ 1A — |z, z2E€E

COROLLARY 3. If f(2) is analytic and if | f(2)| S(1—|2|»), 2E€E,
then there exists a smallest absolute constant K, 3 < K <4, such that

lf@| + |f@]* < K1 — | z])=
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2. Proofs. Let n be an arbitrary positive number. Let f(z) be
analytic in E and satisfy the inequality

(2.1) /@] =@ - |z[»", z€E

Let p be a real number in the open interval (0, 1) and define the
analytic function ¢(z) by the equation ¢(z) =(1—p?)"*-f(pz). Then
¢(2) is analytic on the closure of E and l¢(z)| =1 for Iz[ <1 It
follows from the well-known inequality for bounded analytic func-
tions:

—_— 2
(2.2) |o'(2)| = LM)L, 3 € E,

1— |z]?

that
— (1 =)™ | o) |
)
1- |zl
Let z=pke*tVi¢  (k+1)¢p =0, p**1=7 where £>0. Then pz=re¥ and

1 — (1 — 2/ G+D)2n. lf(re“’) lz
PUGHD (1 — 2/ G+DYn. (1 — p2kIG+D)

1
p(1 — )| f'(p2) | = |z| < 1.

(2.3) | f/(re®)| <

for 0<r<1 and 060 =2x. For fixed r we now choose k>0 so that the
denominator

y = (UG — pGHDIGHD) (] — p2/G+D)n

is maximized. For 0<r<1 and r2=x%1 0<x<l1, k>0, dy/dx=
—P(k, r)-Q(x) where

P(k, 1) =

1
(log —) (1 — )" >0

r

1
(E+1)2
and

0@) =2+ a2 — (1 4+ (2n — 1)r)x — r2

Then when k=0, we have x =72 and Q(r?) = —2r2(1—72) <0, dy/dx
>0. When k=4 «, we have x =1 and Q(1) =2n(1 —72) >0. Thus the
maximum of y is attained by choosing x the sole positive root of

Q(x) =0.
14+Q2n — D)r2+[2n — D)2+ (1204 2)r2 + 1]2
4n + 2

(2.4) rzl(k"-l) =5 =

This means that y is maximized by the following choice of k:
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_ 2 log(1/r) _
(2:5) k= [log{(A(r) —1— (2n — 1)r2)/2s2} 1]
where
(2.6) A(r) = [(2n — D)2t 4+ (120 + 2)72 + 1]12

Itis clear by the method of construction that £>0 and hence r&(0, 1)
implies that p =7Y*+D (0, 1).
For the choice of k given in (2.5) we have
dn+1— 2n — 1)r2 — A(r)
4n + 2
dn(l1 — »?)
Tt 1—(Qn—Dr+ A
dn+1— 2n— D24+ A\
4n(l — r?) ) ’
[14 @n—1Dr+ A@W][2n+ 3)r2 — 1+ A®r)]
8(2n + 1)r2(1 — 7?) '

1 — 20+ = B(y) =

(1 — 72/ GHD)—n = (

(1 — 72/ G+D)=1 =

For the choice of k given in (2.5) we now have from (2.3) the in-
equality
1 — (1 —72G+D)2n, If('c"”) |2

lf'(re”)l = PUGRFD (1 — p2IG+D)n. (1 — p2%/G+D)
2.7 cw |
N 1 — )t [1 — (B(n)™- |f(re") |2]y

where A(r), B(r) and C(r) are defined as in the statement of Theorem
A. It is easily seen that C(1) =(n+1)"*+/n", B(1) =0, A(1) =2n+2.
We shall show that B(r)=(n/(n+1))(1—72%) and C(r)<C(1) for
7n>0,0=r=1.

The inequality B(r) =(n/(n+1))(1—7?), or

An41—2n—1)r2—[(2n — 1) + (120 + 2)r2 + 1]12

2 (4 + D(n/(n + D) - 9,
reduces after simplification and squaring to the simple inequality
(8n2+4n)(1 —r?2=0 which is satisfied forn >0and 0 <7 <1.

The second inequality C(r)<C(1) = (n+1)"+1/n" for n>0 is
equivalent to the inequality
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[4n +1 — 2n — D)2+ AN ] [(2n + 3)r2 — 1 + A(r)]
[@n— )2+ 14 A@D)]2
< (4n + 4™ (4n + 2)12.92
where A (r) is given by (2.6). Since » >0 it is easily verified that
0<4n+1—2un—1)r*+ A@(r) £ (4n+4)
with equality only for » =1. Hence the factor
[an4+1—=Q2n—1)r2+ AP S @n+4)», n>0.
Therefore, in order to obtain C(r) = C(1) it is sufficient to show that
[@n+3)r2 =1+ AN)][(2n — D2+ 1 + A(D]'2
‘ = (4n + 4)(4n + 2)1 2.2
for n>0 and 0 <r=<1. Squaring and simplifying we obtain
[1 + 2n + Dr2]2n + 1) A(r)
S @n+ D1+ 2020 + 122 — (402 — 1)r4].

Since the right-hand side of this last inequality is positive for 0=r<1
we may square again and obtain finally the inequality

16n2(1 — )[1 + (4n2+ 8n + 3)r2] 20, =#>0, 0<r=1.

This completes the proof that C(r) =C(1) =n—"(n+1)"*! for n>0,
and that Theorem A holds.
From Theorem A we have in particular, that if

(2.8) lf@| =@ -1z =n>0, |3z] <1,
then

+ 1\" +1
29 /@] = <" - ) a _" | zlz)"+l<e(n+1)(1 — | 3|3

The factor e cannot be replaced by a constant 4 less than one as the
following example shows. Let >0 be chosen arbitrarily small. Let
0<x<1. Then let

x4+ 3z
14 o

(2.10) f@) = ( )(1 -, |z <1

It follows that |f(z)] <(1—|2]|?)~", |z| <1. Moreover f'(—=x)
=(1—x?)—"1,
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If the factor e could be replaced by a constant 4 <1 the given
example shows that we would then have 1 <A (n+1) for arbitrarily
small >0, a contradiction.

For large values of # the estimate 4(n+1), 1 <4 <Ze, in Corollary
2 is of the right order of 7 since the function (1 —2% 7" has for its
derivative the function 2nz(1 —22)—"".. Indeed we have 2—2(n+41)"1
<4 =e.

In the particular case n=1, C(1) =4 and we have

1) |fe] + /@l k0= |z 2] <y,
with K =4. If f(z) =(1—2%~'and if 2=7, 0<r<1, we have
7] + @] = @r+ 1D — )2 < 31 — r2)-2

and we conclude that the smallest constant K in Corollary 3 is at
least as large as 3. Thus 3K <4.

As an application of Corollary 3 one can easily show that if f(z)
is analytic in E and satisfies the inequality

2.12) /@@ =30 - [0 s€E,

then the Schwarzian derivative w(f, 2) satisfies the inequality
(f”(z))' 1 (f”(Z)>2
vf'(2) 2 \f'(2)
for zEE, and consequently, by Nehari's Test [3], f(2) is univalent
for |z| <1. This is a slight improvement of a similar result given in
[2] where the constant 2(1/5—2) in (2.12), instead of the larger
constant 1/2, was found to be sufficient for univalency. The method
used here is elementary and probably the factor 1/2 in (2.12) can be

replaced by a larger one and still the inequality (2.12) would force
f(2) to be univalent in E.

13) o, 9| = <201 — |z]92
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