A DISTORTION THEOREM FOR ANALYTIC FUNCTIONS

M. S. ROBERTSON ${ }^{1}$

Abstract. Let $f(z)$ be a function analytic in the disk $E\{z:|z|<1\}$ and for some real number $n>0$ let $|f(z)| \leqq\left(1-|z|^{2}\right)^{-n}$, $z \in E$. In this paper it is shown that

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leqq \frac{(n+1)^{n+1}}{n^{n}}\left[1-\left(\frac{n}{n+1}\right)^{2 n}\left(1-|z|^{2}\right)^{2 n}|f(z)|^{2}\right] \\
& \div\left(1-|z|^{2}\right)^{n+1}
\end{aligned}
$$

$z \in E$. In the special case $n=1$ there is a constant $K, 3 \leqq K \leqq 4$, so that

$$
\left|f^{\prime}(z)\right|+|f(z)|^{2} \leqq K\left(1-|z|^{2}\right)^{-2}
$$

This result has application in univalent function theory.

1. Introduction. For functions $f(z)$, analytic and bounded in modulus by one on the disk $E\{z:|z|<1\}$ it is well known that $\left|f^{\prime}(z)\right|$, the modulus of the derived function, satisfies the inequality

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq \frac{1-|f(z)|^{2}}{1-|z|^{2}}, \quad z \in E \tag{1.1}
\end{equation*}
$$

Recently Duren, Shapiro and Shields [2] have sketched a simple proof, using a contour integral representation of $f(z)$, that whenever $f(z)$ satisfies the growth inequality

$$
\begin{equation*}
|f(z)| \leqq\left(1-|z|^{2}\right)^{-1}, \quad z \in E \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq C\left(1-|z|^{2}\right)^{-2}, \quad z \in E \tag{1.3}
\end{equation*}
$$

with the constant $C \leqq 4$. The estimate (1.3) is very useful in connection with computations involving the Schwarzian derivative of an analytic function and problems relating to the univalency of such functions (see for example [1], [2], [3], [4], [5]). The best or smallest value of the constant C is apparently still unknown [see Research Problem N, Bull. Amer. Math. Soc. 71 (1965), 857].

Received by the editors July $27,1970$.
AMS 1970 subject classifications. Primary 30A42, 30A76; Secondary 30A36.
Key words and phrases. Modulus bounds, analytic functions, distortion, univalent, functions, Schwarzian derivative.
${ }^{1}$ Research supported by the National Science Foundation (Contract NSF-GP11726).

In this note we extend the result given in (1.3) in several ways and include both (1.1) and (1.3) as special cases of a more general formulation. The method of proof appears to be new. It starts with the inequality (1.1) and avoids the integral representation method of the authors in [2] to obtain (1.3). In this way an additional term improves (1.3) (see Corollary 3). The basic result appears in Theorem A.

Theorem A. Let $f(z)$ be a function analytic in the disk $E\{z:|z|<1\}$ and for some given real number $n>0$ let

$$
|f(z)| \leqq\left(1-|z|^{2}\right)^{-n}, \quad z \in E
$$

Let $A(r), B(r), C(r)$ be the nonnegative, continuous real functions of r defined for $0 \leqq r \leqq 1$ by the equations

$$
\begin{aligned}
A(r)= & {\left[(2 n-1)^{2} r^{4}+(12 n+2) r^{2}+1\right]^{1 / 2}, } \\
B(r)= & {\left[4 n+1-(2 n-1) r^{2}-A(r)\right] /(4 n+2), } \\
C(r)= & {\left[4 n+1-(2 n-1) r^{2}+A(r)\right]^{n} \cdot\left[(2 n+3) r^{2}-1+A(r)\right] } \\
& \cdot\left[(2 n-1) r^{2}+A(r)+1\right]^{1 / 2} \div(4 n)^{n}\left(4 r^{2}\right)(4 n+2)^{1 / 2}, \\
C(0)= & \lim _{r \rightarrow 0} C(r)=(1+1 / 2 n)^{n} \cdot(2 n+1)^{1 / 2} .
\end{aligned}
$$

Then for $z \in E$

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leqq \frac{C(|z|)\left[1-B(|z|)^{2 n}|f(z)|^{2}\right]}{\left(1-|z|^{2}\right)^{n+1}} \\
& \leqq \frac{C(|z|)\left[1-(n /(n+1))^{2 n} \cdot\left(1-|z|^{2}\right)^{2 n} \cdot|f(z)|^{2}\right]}{\left(1-|z|^{2}\right)^{n+1}}
\end{aligned}
$$

Moreover,

$$
C(|z|) \leqq C(1)=(n+1)^{n+1} / n^{n}<e(n+1), \quad 0 \leqq|z| \leqq 1
$$

Corollary 1. The inequality (1.1) follows from Theorem A as a limiting case as $n \rightarrow 0$ whenever $f(z)$ is analytic with bounded modulus, $|f(z)| \leqq 1, z \in E$.

Corollary 2. If $f(z)$ is analytic in E and if, for some $n>0,|f(z)|$ $\leqq\left(1-|z|^{2}\right)^{-n}, z \in E$, then there exists a smallest constant A, independent of $f(z)$ and $n, 1 \leqq A \leqq e$, such that

$$
\left|f^{\prime}(z)\right| \leqq(n+1) A\left(1-|z|^{2}\right)^{-n-1}, \quad z \in E
$$

Corollary 3. If $f(z)$ is analytic and if $|f(z)| \leqq\left(1-|z|^{2}\right)^{-1}, z \in E$, then there exists a smallest absolute constant $K, 3 \leqq K \leqq 4$, such that

$$
\left|f^{\prime}(z)\right|+|f(z)|^{2} \leqq K\left(1-|z|^{2}\right)^{-2}
$$

2. Proofs. Let n be an arbitrary positive number. Let $f(z)$ be analytic in E and satisfy the inequality

$$
\begin{equation*}
|f(z)| \leqq\left(1-|z|^{2}\right)^{-n}, \quad z \in E \tag{2.1}
\end{equation*}
$$

Let ρ be a real number in the open interval $(0,1)$ and define the analytic function $\phi(z)$ by the equation $\phi(z)=\left(1-\rho^{2}\right)^{n} \cdot f(\rho z)$. Then $\phi(z)$ is analytic on the closure of E and $|\phi(z)| \leqq 1$ for $|z| \leqq 1$. It follows from the well-known inequality for bounded analytic functions:

$$
\begin{equation*}
\left|\phi^{\prime}(z)\right| \leqq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}, \quad z \in E \tag{2.2}
\end{equation*}
$$

that

$$
\rho\left(1-\rho^{2}\right)^{n}\left|f^{\prime}(\rho z)\right| \leqq \frac{1-\left(1-\rho^{2}\right)^{2 n} \cdot|f(\rho z)|^{2}}{1-|z|^{2}}, \quad|z|<1
$$

Let $z=\rho^{k} e^{(k+1) i \phi},(k+1) \phi=\theta, \rho^{k+1}=r$ where $k>0$. Then $\rho z=r e^{i \theta}$ and

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqq \frac{1-\left(1-r^{2 /(k+1)}\right)^{2 n} \cdot\left|f\left(r e^{i \theta}\right)\right|^{2}}{r^{1 /(k+1)} \cdot\left(1-r^{2 /(k+1)}\right)^{n} \cdot\left(1-r^{2 k /(k+1)}\right)} \tag{2.3}
\end{equation*}
$$

for $0<r<1$ and $0 \leqq \theta \leqq 2 \pi$. For fixed r we now choose $k>0$ so that the denominator

$$
y=\left(r^{1 /(k+1)}-r^{(2 k+1) /(k+1)}\right)\left(1-r^{2 /(k+1)}\right)^{n}
$$

is maximized. For $0<r<1$ and $r^{2}=x^{k+1}, 0<x<1, k>0, d y / d x=$ $-P(k, r) \cdot Q(x)$ where

$$
P(k, r)=\frac{1}{(k+1)^{2}}\left(\log \frac{1}{r}\right) x^{-1 / 2}(1-x)^{n-1}>0
$$

and

$$
Q(x)=(2 n+1) x^{2}-\left(1+(2 n-1) r^{2}\right) x-r^{2} .
$$

Then when $k=0$, we have $x=r^{2}$ and $Q\left(r^{2}\right)=-2 r^{2}\left(1-r^{2}\right)<0, d y / d x$ >0. When $k=+\infty$, we have $x=1$ and $Q(1)=2 n\left(1-r^{2}\right)>0$. Thus the maximum of y is attained by choosing x the sole positive root of $Q(x)=0$.

$$
\begin{equation*}
r^{2 /(k+1)}=x=\frac{1+(2 n-1) r^{2}+\left[(2 n-1)^{2} r^{4}+(12 n+2) r^{2}+1\right]^{1 / 2}}{4 n+2} \tag{2.4}
\end{equation*}
$$

This means that y is maximized by the following choice of k :

$$
\begin{equation*}
k=\left[\frac{2 \log (1 / r)}{\log \left\{\left(A(r)-1-(2 n-1) r^{2}\right) / 2 r^{2}\right\}}-1\right] \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
A(r)=\left[(2 n-1)^{2} r^{4}+(12 n+2) r^{2}+1\right]^{1 / 2} \tag{2.6}
\end{equation*}
$$

It is clear by the method of construction that $k>0$ and hence $r \in(0,1)$ implies that $\rho=r^{1 /(k+1)} \in(0,1)$.

For the choice of k given in (2.5) we have

$$
\begin{aligned}
1-r^{2 /(k+1)} & =B(r)=\frac{4 n+1-(2 n-1) r^{2}-A(r)}{4 n+2} \\
& =\frac{4 n\left(1-r^{2}\right)}{4 n+1-(2 n-1) r^{2}+A(r)}, \\
\left(1-r^{2 /(k+1)}\right)^{-n} & =\left(\frac{4 n+1-(2 n-1) r^{2}+A(r)}{4 n\left(1-r^{2}\right)}\right)^{n}, \\
\left(1-r^{2 k /(k+1)}\right)^{-1} & =\frac{\left[1+(2 n-1) r^{2}+A(r)\right]\left[(2 n+3) r^{2}-1+A(r)\right]}{8(2 n+1) r^{2}\left(1-r^{2}\right)}
\end{aligned}
$$

For the choice of k given in (2.5) we now have from (2.3) the inequality

$$
\begin{align*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right| & \leqq \frac{1-\left(1-r^{2 /(k+1)}\right)^{2 n} \cdot\left|f\left(r e^{i \theta}\right)\right|^{2}}{r^{1 /(k+1)} \cdot\left(1-r^{2 /(k+1)}\right)^{n} \cdot\left(1-r^{2 k /(k+1)}\right)} \\
& =\frac{C(r)}{\left(1-r^{2}\right)^{n+1}}\left[1-(B(r))^{2 n} \cdot\left|f\left(r e^{i \theta}\right)\right|^{2}\right] \tag{2.7}
\end{align*}
$$

where $A(r), B(r)$ and $C(r)$ are defined as in the statement of Theorem A. It is easily seen that $C(1)=(n+1)^{n+1} / n^{n}, B(1)=0, A(1)=2 n+2$. We shall show that $B(r) \geqq(n /(n+1))\left(1-r^{2}\right)$ and $C(r) \leqq C(1)$ for $n>0,0 \leqq r \leqq 1$.

The inequality $B(r) \geqq(n /(n+1))\left(1-r^{2}\right)$, or

$$
\begin{aligned}
4 n+1-(2 n-1) r^{2}-\left[(2 n-1)^{2} r^{4}+\right. & \left.(12 n+2) r^{2}+1\right]^{1 / 2} \\
& \geqq(4 n+2)(n /(n+1))\left(1-r^{2}\right),
\end{aligned}
$$

reduces after simplification and squaring to the simple inequality $\left(8 n^{2}+4 n\right)\left(1-r^{2}\right)^{2} \geqq 0$ which is satisfied for $n>0$ and $0 \leqq r \leqq 1$.

The second inequality $C(r) \leqq C(1)=(n+1)^{n+1} / n^{n}$ for $n>0$ is equivalent to the inequality

$$
\begin{aligned}
& {\left[4 n+1-(2 n-1) r^{2}+A(r)\right]^{n} \cdot[(2 n+3)}\left.r^{2}-1+A(r)\right] \\
& \cdot\left[(2 n-1) r^{2}+1+A(r)\right]^{1 / 2} \\
& \leqq(4 n+4)^{n+1} \cdot(4 n+2)^{1 / 2} \cdot r^{2}
\end{aligned}
$$

where $A(r)$ is given by (2.6). Since $n>0$ it is easily verified that

$$
0<4 n+1-(2 n-1) r^{2}+A(r) \leqq(4 n+4)
$$

with equality only for $r=1$. Hence the factor

$$
\left[4 n+1-(2 n-1) r^{2}+A(r)\right]^{n} \leqq(4 n+4)^{n}, \quad n>0 .
$$

Therefore, in order to obtain $C(r) \leqq C(1)$ it is sufficient to show that

$$
\begin{aligned}
& {\left[(2 n+3) r^{2}-1+A(r)\right]\left[(2 n-1) r^{2}+1+A(r)\right]^{1 / 2} } \\
& \leqq(4 n+4)(4 n+2)^{1 / 2} \cdot r^{2}
\end{aligned}
$$

for $n>0$ and $0 \leqq r \leqq 1$. Squaring and simplifying we obtain

$$
\begin{aligned}
{\left[1+(2 n+1) r^{2}\right](2 n+1) } & A(r) \\
& \leqq(2 n+1)\left[1+2(2 n+1)^{2} r^{2}-\left(4 n^{2}-1\right) r^{4}\right] .
\end{aligned}
$$

Since the right-hand side of this last inequality is positive for $0 \leqq r<1$ we may square again and obtain finally the inequality

$$
16 n^{2}\left(1-r^{2}\right)\left[1+\left(4 n^{2}+8 n+3\right) r^{2}\right] \leqq 0, \quad n>0, \quad 0 \leqq r \leqq 1 .
$$

This completes the proof that $C(r) \leqq C(1)=n^{-n}(n+1)^{n+1}$ for $n>0$, and that Theorem A holds.

From Theorem A we have in particular, that if

$$
\begin{equation*}
|f(z)| \leqq\left(1-|z|^{2}\right)^{-n}, \quad n>0, \quad|z|<1 \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|J^{\prime}(z)\right| \leqq\left(\frac{n+1}{n}\right)^{n} \cdot \frac{n+1}{\left(1-|z|^{2}\right)^{n+1}}<e(n+1)\left(1-|z|^{2}\right)^{-n-1} . \tag{2.9}
\end{equation*}
$$

The factor e cannot be replaced by a constant A less than one as the following example shows. Let $n>0$ be chosen arbitrarily small. Let $0<x<1$. Then let

$$
\begin{equation*}
f(z)=\left(\frac{x+z}{1+x^{2}}\right)\left(1-z^{2}\right)^{-n}, \quad|z|<1 . \tag{2.10}
\end{equation*}
$$

It follows that $|f(z)| \leqq\left(1-|z|^{2}\right)^{-n},|z|<1$. Moreover $f^{\prime}(-x)$ $=\left(1-x^{2}\right)^{-n-1}$.

If the factor e could be replaced by a constant $A<1$ the given example shows that we would then have $1<A(n+1)$ for arbitrarily small $n>0$, a contradiction.

For large values of n the estimate $A(n+1), 1 \leqq A \leqq e$, in Corollary 2 is of the right order of n since the function $\left(1-z^{2}\right)^{-n}$ has for its derivative the function $2 n z\left(1-z^{2}\right)^{-n-1}$. Indeed we have $2-2(n+1)^{-1}$ $\leqq A \leqq e$.

In the particular case $n=1, C(1)=4$ and we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right|+|f(z)|^{2} \leqq K\left(1-|z|^{2}\right)^{-2}, \quad|z|<1 \tag{2.11}
\end{equation*}
$$

with $K \leqq 4$. If $f(z)=\left(1-z^{2}\right)^{-1}$ and if $z=r, 0<r<1$, we have

$$
\left|f^{\prime}(r)\right|+|f(r)|^{2}=(2 r+1)\left(1-r^{2}\right)^{-2} \leqq 3\left(1-r^{2}\right)^{-2}
$$

and we conclude that the smallest constant K in Corollary 3 is at least as large as 3 . Thus $3 \leqq K \leqq 4$.

As an application of Corollary 3 one can easily show that if $f(z)$ is analytic in E and satisfies the inequality

$$
\begin{equation*}
\left|f^{\prime \prime}(z) / f^{\prime}(z)\right| \leqq \frac{1}{2}\left(1-|z|^{2}\right)^{-1}, \quad z \in E \tag{2.12}
\end{equation*}
$$

then the Schwarzian derivative $\omega(f, z)$ satisfies the inequality

$$
\begin{equation*}
|\omega(f, z)|=\left|\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right| \leqq 2\left(1-|z|^{2}\right)^{-2} \tag{2.13}
\end{equation*}
$$

for $z \in E$, and consequently, by Nehari's Test [3], $f(z)$ is univalent for $|z|<1$. This is a slight improvement of a similar result given in [2] where the constant $2(\sqrt{ } 5-2)$ in (2.12), instead of the larger constant $1 / 2$, was found to be sufficient for univalency. The method used here is elementary and probably the factor $1 / 2$ in (2.12) can be replaced by a larger one and still the inequality (2.12) would force $f(z)$ to be univalent in E.

References

1. W. M. Causey, The close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207-212. MR 35 \#6807.
2. P. L. Duren, H. S. Shapiro and A. L. Shields, Singular measures and domains not of the Smirnov type, Duke Math. J. 33 (1966), 247-254. MR 33 \#7506.
3. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. MR 10, 696.
4. M. Nunokawa, On the univalency and multivalency of certain analytic functions, Math. Z. 104 (1968), 394-404. MR 37 \#2971.
5. M. Zeigler, A class of regular functions related to univalent functions, Ph.D. dissertation, University of Delaware, Newark, Del., 1970.

University of Delaware, Newark, Delaware 19711

