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OSCILLATION PROPERTIES OF THE 2-2 DISCONJUGATE
FOURTH ORDER SELFADJOINT

DIFFERENTIAL EQUATION

LEO J. SCHNEIDER1

Abstract. This paper contains a proof that either all, or none,

of the nontrivial solutions of the fourth order linear selfadjoint

differential equation have an infinite number of zeros on a half line,

provided that no nontrivial solution has more than one double zero

on that half line.

Throughout this paper, let Ly = iry")" — iqy')' +py where r, q, and

p are given real-valued functions, aEi~ °°, °°) is given, r", q',

pEC[a, oo ), and r(t)>0 for t^a. A non trivial solution to Ly = 0 is

said to oscillate if its zeros in [a, oo ) are unbounded.

Theorem 1. If no nontrivial solution to Ly=0 has more than one

double zero in [a, oo), then all the nontrivial solutions oscillate or none

oscillate.

W. Leighton and Z. Nehari [l, p. 367] obtain the same conclusion

using the hypothesis thatg(/) =0, p(t)>0 for ¿2: a. As they note, these

assumptions imply that no nontrivial solution has more than one

double zero. Some lemmas will be established before proving Theorem

1.
Ly = 0 will be said to be 2-2 disconjugate if no nontrivial solution

has more than one double zero in [a, oo). Of course, this is a special

case of the concept known as n-n disconjugacy. When r, q, and p are

all constants, it can easily be shown that Ly = 0 is 2-2 disconjugate

if and only if rw4-\-qw2-\-p ^ 0 for all real numbers, w.

For ¿ = 1,2,3 and a^b< oo, let y¡,¿ designate the solution to

Ly = 0,    yU>(b) = Sij,       j = 0, 1, 2, 3,

where ba is the Kronecker delta. Denote the zeros of yw by

_••• < nib, -1) < b < V(b, 1) < nib, 2) < • • •
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continuing in both directions until all the zeros of vw in [a, °o) are

named.

Let W(ui, ■ ■ • , M„)=det(«iü-1)), \^i, j^n, denote the Wron-

skian determinant of tti, • ■ ■ , u„.

Lemma 1. If Z/y = 0 is 2-2 disconjugate, then for all k, n(b, k) varies

continuously with b.

Lemma 2. If Ly = 0 is 2-2 disconjugate and u and v are independent

solutions with double zeros at b^a, then W(u, v) vanishes only at b.

Lemma 3. If W(u, v) never vanishes on an interval, then the zeros of

u and v separate on that interval.

The same proof given by Leigh ton and Nehari [l, p. 360 ] for the

continuity of n(b, k) proves Lemma 1. If, in Lemma 2, W(u, v)(c) =0

for cj^b, then some nontrivial linear combination of u and v has

double zeros at both b and c, contradicting 2-2 disconjugacy. Lemma

3 is stated by Leigh ton and Nehari [l, p. 327].

Corollary. // Ly —0 is 2-2 disconjugate and u and v are indepen-

dent solutions with double zeros at b, then the zeros of u and v separate on

(b, <x>),andon [a,b)whena<b. Furthermore,if v-yi3andn(b, 1) [resp.

n(b, —1)] exists, then u has a zero in (b, n(b, 1)) [resp. (n(b, —1), b)].

Proof. In light of Lemmas 2 and 3, only the last statement re-

quires a proof. Let c=n(b, 1). Assume, without loss in generality,

that u is positive in (b, c]. Then, for every constant ^4>0, there

exists e>0 so (Au — v)(t) >0 for b<t<b+t. Since v is uniformly

bounded in [b, c], there exists A >0 so w = Au—v is nonnegative in

[b, c] and has a double zero in (b, c). But w is nontrivial and also has

a double zero at b, contradicting 2-2 disconjugacy. The proof that u

has a zero in (n(b, —1), b) is parallel.

If Lu = 0, u(b) =0?¿u'(b), then differentiation of

ya    ybi    u

ybz    y'bi    u

u tr ti
rybi   ryhi   ru

four times shows it to be a nontrivial solution to Ly = 0 with a triple

zero at b, so rW(yn, ybi, u) =73vm for some constant B^O. This

curious fact is an aid in the proof of Lemmas 4 and 5.

Lemma 4. If b>a and Ly = 0 is 2-2 disconjugate with solution u in-
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dependent of yb3 such that u(b) =0, then W(yb3, u) has at most one zero

in ib, oo ).

Proof. Because of Lemma 2, suppose u'(b)^0. By Lemma 2,

Wiyt», yb2)it)^Q for t>b. Let

fit) - Wiytt, u)it)/Wiyb3, yb2)it)       for t > b.

Then

2

_ ybiWjyb3, yb2, u) _ Byb3

iWiyb3, yb2))2    ' riWiyb3, yb2))2 '

The first equality is due to Pólya [3, p. 315], the second equality

follows since rWiyb3, yb2, u)=Byb3 for some B^O. This implies/'

cannot change sign in ib, oo) and is zero only on a discrete set of

points. Thus/has at most one zero in (&, oo). Consequently, Wiyb3, u)

has at most one zero there.

The following corollary is typical of the relationships which can

be shown to hold between the zeros of nontrivial solutions to Ly = 0

with simultaneous zeros. Extensions of these relations to pairs of

arbitrary solutions follows from Lemma 7.

Corollary. Let Ly = 0 be 2-2 disconjugate with nontrivial solutions

u and v such that w(ô) =0=u(¿>) for some b^a. For a^d<e< oo, let

Niu, d, e) denote the number of zeros of u in id, e). Then there exists

c^b such that

| Niu, d, e) — Niv, d, e)\   = 2        when c ^ d < e < oo.

Proof. By Lemma 4 there exists c ^ b so Wiyta, u)it) ^0^

Wiytt, »)(<) for t>c. By Lemma 3,

| N(.u, d, e) - Niv, d,e)\   á | Niyb3, d, e) - N («, d, e) |

+ | Niyb3, d, e) - N(v, d, e) \

S 1 + 1.

Lemma 5. // Ly = 0 is 2-2 disconjugate, b^c, and yaib)=0, then

c=i)ib, k) for some k. Furthermore, if b<c, then yb3 and ya both have

k — l zeros on ib, c). When k>l, the zeros of yb3 and y¿¡ separate on

ib, c) with vie, i—k)<vib, 1) and nie, —í)<v(b, k — l).

Proof. Since ya(b) =0=yc3(c) =y'aic) =y'Jiic), ya is a nontrivial

linear combination of yb3, y&j, and ybi, and Wiyb3, yb2, ybi) (c) = 0. Now

r!F(yw, yn, yti) =Byb3 for B^O, so c=r¡ib, k) for some k. The zeros

of yM and ya separate in (b, c) if b<c, since c is the only zero of
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W(jb3,ya) in (b, =o) by Lemma 4. Assume &>1 and nib, 1) <n(c, 1—k).

Then for some constant A, Ayc3— yw has a double zero at some d

E(b, n(b, 1)), contradicting the nonvanishing property of IF(y¡,3, ya)

on (b, c). The proof that v(c, —1) <t)(b, k — l) is similar.

Corollary. If Ly=0 is 2-2 disconjugate, then each n(b, k) is a

strictly increasing function of b.

Proof. By Lemma 1, if r\(b, k) were not strictly increasing, there

would exist c<d so n(c, k) =n(d, k) =e. Suppose k>0. By Lemma 5,

Ve3 has k — l zeros in both id, e) and (c, e), contradicting the fact that

yaid) =0. If k<0 the proof is similar.

Lemma 6. If Z/y = 0 is 2-2 disconjugate, b^a, and nib, 2) exists, then

every solution has at least one zero in (b, nib, 2)).

Proof. Let c=n(b, 2). Let « be a nontrivial solution to Ly=0. By

Lemma 5 and the corollary to Lemma 3, u has a zero in [nie, — 1), c)

Eib, c) ii u has a double zero at c. Assume u is independent of ybi

and, without loss in generality, is negative in [n(b, 1), c). Two cases

will be discussed separately.

Case 1. uic) = 0<w'(e). Since w(t) =u'(c)yu(t) —y'i,i(c)u(t) is a non-

trivial solution and has a double zero at c, w has exactly two simple

zeros, d and e, in [b, c) with b<d<n(c, —1) <e<c by the corollary to

Lemma 3. If e<n(b, 1) <c, then w is positive in (e, c) since w(n(b, 1))

= -y'bz(c)u(v(b, 1))>0. Hence

0 > w(r,(c, -1)) = u'(c)yhi(n(c, -1)) - y'bi(c)u(v(c, -1)).

Now u(n(c, —1)) is positive because the other three terms are all

positive, so u has a zero in (n(c, —1), n(b, \))E(b, c). If n(c, — 1)

<n(b, 1) <e, a similar proof can be given.

Case 2. u(c) <0. Since m is negative on [t?(ô, 1), c], for some con-

stant A>0,w=ybz — Au has a double zero at some dE(v(°, l)i c) and

is positive at all other points of this interval. By the corollary to

Lemma 3,

0 > wivid, -1)) = ybtivid, -1)) - Auivid, -1)).

Nowtj(c, —1) <r¡ib, 1) by Lemma 5, and 77(6, 1) <d<c, so b<r¡id, — 1)

<t)(c, -1)<77(&, 1). Therefore y¡,3(77(á, -1)) >0, and thus uinid, -1))

>0. Hence m has a zero in (n(d, —l),n(b, l))E(b, c).

Lemma 7. // Ly = 0is 2-2 disconjugate with nontrivial solutions u and

v, and u has five distinct zeros in [b, c]E [a, <»), then v has at least one

zero in (b, c).
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Proof. Suppose b is the first of the five distinct zeros in [b, c].

By Lemma 4, W(yb3, u) has at most one zero in (b, n(b, 2) ]. Therefore,

by Lemma 3, u has at most three distinct zeros in (b, r¡(b, 2)], so

n(b, 2) <c. By Lemma 6, v has at least one zero in (b, v(b, 2)), so, a

fortiori, v has a zero in (ô, c).

Proof of Theorem 1. If ya3 oscillates and Lu=0, then u has a

zero in (v(a, 4/), nia, 4/+4)) for every positive integer/ by Lemma 7.

If ya% has a largest zero b and m is a nontrivial solution to Ly = 0,

then, by Lemma 7, u can have no more than four zeros in [b,  <»).

That the converse of Theorem 1 is not true follows from the fact

that any nontrivial solution to

yw + 5y" + 4y = 0

oscillates, but w(/)=sin 2t — 2 sin / is a solution with an infinite

number of double zeros. Theorem 1 cannot be extended to n-n dis-

conjugate selfadjoint equations of order 2ra for n>2 since both u(t) =t

and v(t)=sin(t) sinh(f) are solutions to y(2">+4y<2n-4) = 0 for n>2.

That Theorem 1 cannot be extended to include selfadjoint equations

for which no solution can have more than two double zeros follows

from y(i)—y = 0. One possible extension of Theorem 1 is stated in

Theorem 2.

Let a* for &=0, 1, • • • ,n be real-valued, sufficiently differentiable

functions defined on [a, oo) with o„(i)>0 for t^a. For aSj&, c< oo,

define b to be n-n conjugate to c with multiplicity m if

n

X) iakyik))ik) = 0,        yW(4) = 0 = y<»(c)    for/ = 0, 1, •■•,»- 1

has m independent solutions. A straightforward modification of the

proofs of the Index and Separation Theorems of M. Morse [2, p. 7—

18] yields the following lemma.

Lemma 8. For b^a and a^d<e< oo, letm„(b, (d, e)) denote the sum

of the multiplicities of the points cE(d, e) which are n-n conjugate to b.

Then

| mn(b, id, e)) — »»„(&', id, e))\   g n

when a^b, b', d< oo ; d<e< oo.

Theorem 2. If Ly=0 and m2ia, (a, e)) is bounded for e>a, then

either all, or none, of the nontrivial solutions oscillate.

■ Proof. Choose b^a so m2(a, (b, e)) =0 for all e>b, and choose

c>b. By Lemma 8, m2(c, (b, e)) ¿2 for alle>¿>. Since eis 2-2 conjugate
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to itself with multiplicity 2, there exists no c'>c such that c' is 2-2

conjugate to c. Therefore Ly = 0 is 2-2 disconjugate on [c, °o), and

Theorem 2 follows from Theorem 1.

Added in proof. Lemma 5 and its corollary also appear in a recent

paper by A. C. Peterson [4, pp. 505-506].
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